
University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 1/3 Revision 0

Lab 1: ARM Assembly Checksum, LED Drivers, ISRs
OBJECTIVES
 Familiarize yourself with C callable ARM thumb

assembly and assembly callable C functions via matrix
checksum

 Create the drivers for the LED drivers via I2C
 Familiarize yourself with NVIC, interrupts,

SYSTICK, and via writing ISRs

PART A : ARM Assembly Checksum

MOTIVATION
Writing assembly code is needed when creating low level
performance critical code. In Lab 2, you will be writing
the core sections of the G8RTOS operating systems.
Some of these sections will need to be written in
assembly. The first part of this lab will help you
familiarize yourself with ARM Thumb Assembly and
learn the useful concept of checksums.

Checksum Basics:
Checksums are used to check to see if a data transfer was
valid. Checksums are extremely important in the world of
digital communication and embedded computing. This is
even more so true for space embedded computing since
solar radiation actively flips bits during a data transfer.

Fast checksums, lower computation intensity, many
errors can get through unnoticed [2]:
1) Parity (even, odd, mark, space)
2) Xor checksum (Longitudinal Redundancy Checks)

a. Perform an xor on a set of words being
transferred and transfer the result for
comparison

3) Additive checksums
a. Perform a sum (typically take one’s

complement of all numbers to be added
first) on a set of words being transferred and
transfer the result for comparison

Moderately fast checksums, Intermediate computation
intensity, only some errors can get through unnoticed
[2]:
1) Fletcher checksum [3]

a. Data is divided into blocks and modular sum
of blocks is computed

2) Adler checksum [2]
a. Typically not as good at Fletcher checksum

Slow checksum, high computational intensity, very few
errors can get through unnoticed
1) Cyclic Redundancy Checks (CRC)

a. There are numerous CRC implementations
that very in computation intensity

b. Somewhat configurable for the application

The Fletcher checksum works by the following
(Straightforward, un-optimized implementation) [3]:

1) Take in a pointer to a vector (1D array) of data and a
size

2) Define two temporary variable sum1 and sum2 that
are twice as large as the data type of the data vector

3) Accumulate sum1 over the data set (for each data
point, add it to sum1)

4) Each time sum1 is updated, the new value of sum1 is
added onto sum2

5) To assure that sum1 and sum2 don’t overflow, use a
modulo operation each time a sum is computed

6) Return a concatenation of sum2 (MSBs) and sum1
(LSBs)

Assignment:
You need to write an assembly function that implements
the fletcher-16 algorithm and a C main function that calls
it and compares it to a C implementation. The main.c
program should create a 4x4 square matrix of uint8_t.
Initialize the matrix to be a magic square (you may hard
code this part, unless you want to write a magic square
function yourself!) [1].

Implement a Fletcher 16 checksum on the matrix in
assembly [2] [3]. You need to call this assembly function
from within your main.c program. To compute the mod
255 operation create a modulo function in C in the main.c
and call it from within the assembly routine.

With this you will learn how to call C from assembly and
assembly from C.

Hint: Be careful how you address the individual bytes in
assembly (look at the instruction set carefully)

To help you get started, look over the Implementation
section of [3]. You must implement the straightforward
implementation from [3] and create the assembly callable
function for the modulus operation.

In addition you must implement the fletcher-16 function
in C for comparison. You can use the C code snippet in
[3] for this task. At the end of your main.c program you
need to compare the result of the fletcher C routine and
the fletcher assembly routine.

You can check whether the comparison is correct or not
either by using a breakpoint and debugging the code or
using the serial port to send a message to the screen. We
recommend using the serial port so that you can become
familiar with its operation as you will need it in later labs.

IN-LAB REQUIREMENTS

Demo the Fletcher checksum for the magic matrix and a
matrix that will be provided in lab.

University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 2/3 Revision 0

Lab 1: ARM Assembly Checksum, LED Drivers, ISRs
RESOURCES:
[1] https://en.wikipedia.org/wiki/Magic_square

[2] https://betterembsw.blogspot.com/2010/05/which-
error-detection-code-should-you.html

[3] https://en.wikipedia.org/wiki/Fletcher's_checksum

[4] https://betterembsw.blogspot.com/2010/05/whats-best-
crc-polynomial-to-use.html

PART B : LED Drivers

MOTIVATION
When working with embedded systems, you will be
required to interface with external devices.
Communication with external devices can be parallel or
serial in nature. Serial methods of communication are
extremely common because they decrease the number of
lines or traces that need to connect the master and slaves.
During this semester, and for years to come, you will find
I2C useful because a very large number of devices can be
addressed using only two lines or traces.
This section will introduce you to the registers used by the
MSP432 for I2C communications, and prepare you to
interface with external devices.

Basics:
If you haven’t read the manual for the LP3943 and the I2C
section of the MSP432 Family manual, stop and do so
now.

We will be controlling 16 RGB LEDs. This means that we
will be powering 48 individual LED channels. This is a
major reason to use an LED driver, we don’t lose 48
GPIO channels to the LEDs. Consequently, we will be
using three LED drivers, one for the red, blue, and green
channels of each LED.

The LED drivers we have chosen are not just a simple
driver, they also are small microcontrollers that can
generate a PWM signal on each of their 16 LED channels.
This is very useful because we can use the duty cycle of
the PWM signal to dim or brighten each channel. In effect
this will allow us to create any visible color by combining
different brightness values of the red, green, and blue
channels of each LED. This is the same process used by
your phone, tablet, and computer screens. You are not
required to use the LEDs in PWM mode, but it is your
choice if you’d like to.

Assignment:
You will write a library to communicate with the LP3943s
on your board. You should write a function to initialize
the LEDs (the I2C peripheral and all the LEDs off). You
should also create a function to change the state the LED
array. This means the function should take in a color,

and a 16bit stream that indicates which LED to light
up (you will need to do some bit manipulation to
format the ON setting for the LEDs, refer to pg. 13 in
the documentation). It is highly suggested that you make
use of the LP3943’s register increment bit.

I recommend using an enum for the three colors: RED,
BLUE, and GREEN.

You may also find it useful to know that the driver at 0x60
controls all the blue channels, 0x61 controls all the green
channels, and 0x62 controls all the red channels. So as not
interfere with other devices, you should use the
eUSCI_B_2 port. Consult the pin-out to determine which
pins this port corresponds to.

The DAD board has a built in I2C interpreter, which is
highly recommended for debugging purposes to make
sure you’re seeing the address and data being sent out
appropriately. You can probe these pins from the
Launchpad.

PRE-LAB QUESTIONS
1. What is the maximum clock speed of the

LP3943?
2. In your own words, describe the I2C

communications process for the LP3943

IN-LAB REQUIREMENTS
Run your part A code on the magic square matrix and
display the result in hex on your LEDs (you must use all 3
colors to show that you can properly use all of them)

RESOURCES:
[1] http://www.ti.com/lit/ug/slau356e/slau356e.pdf

[2] http://www.ti.com/lit/ds/symlink/lp3943.pdf

PART C : ISR

MOTIVATION
There are many dynamics to the ARMv7-M exception
model (how exceptions are handled). One of the reasons
for ARM’s incredible success in the embedded systems
world is its compatibility with RTOSs. This compatibility
largely comes from the exception model. This is critical
to understand to fully utilize the processor.

Basics:
For an introduction to the exception model, please read
over the PowerPoint lecture and refer to the manuals for
more in depth knowledge.

Assignment:

https://en.wikipedia.org/wiki/Magic_square
http://www.ti.com/lit/ds/symlink/lp3943.pdf
http://www.ti.com/lit/ug/slau356e/slau356e.pdf
https://betterembsw.blogspot.com/2010/05/whats-best-crc-polynomial-to-use.html
https://betterembsw.blogspot.com/2010/05/whats-best-crc-polynomial-to-use.html
https://en.wikipedia.org/wiki/Fletcher's_checksum
https://betterembsw.blogspot.com/2010/05/which-error-detection-code-should-you.html
https://betterembsw.blogspot.com/2010/05/which-error-detection-code-should-you.html

University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 3/3 Revision 0

Lab 1: ARM Assembly Checksum, LED Drivers, ISRs
Create at least two different multistep, animated color
patterns (be creative!). Use the SYSTICK timer to create
an interrupt that occurs once every 250ms. Within the
ISR, communicate the next step of the pattern to the
LEDs via the LED drivers made prior.

Create an external interrupt on port 4 bit 4 (this
corresponds to the top button on the daughter board). You
will write this ISR in C. Within this ISR, change the LED
pattern you are displaying.

To initialize the NVIC, you can use the
NVIC_EnableIRQ(IRQn) function.

You are not allowed to use software loops to wait for
interrupts. You must enter the low-power-modes
(LPMs) when waiting for interrupts.

PRE-LAB QUESTIONS
1) What are the advantages and disadvantages of using

the Systick over some other timer?
2) What was your final percentage error for the periodic

interrupt?

IN-LAB REQUIREMENTS
Demo the external interrupt driven by the button interrupt
and the systick interrupt via the LEDs.

RESOURCES:
[1] ARM exceptions lecture
[2] ARMv7-m manual
[3]http://infocenter.arm.com/help/topic/com.arm.doc.ddi0
439b/DDI0439B_cortex_m4_r0p0_trm.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf

