
Lab 1
CCS AND MORE

EEL4930 – Microprocessor Applications II1

EEL4930 – Microprocessor Applications II2

Overview
• Each subgroup of 10 students has a 2 hour lab session each week.

• This lab session is for demonstrating your assignment to the TAs and asking for
help from the TAs.

• 4 labs in total constitute 60% of your grade.

• Each lab will span 2-3 weeks.

• Within this time it is up to you to demonstrate to the lab TAs that your code
works on the board.

• The TA will go through your code and ask you questions. Code quality can effect
your final grade for that lab.

• The 5th lab is the final project which is 20% of the course grade

• you can earn up to 10% extra credit if you build a new project on top of Lab 5

EEL4930 – Microprocessor Applications II3

Board Preparation
• MSP432P401R Board and extensions

• You need to solder
the joystick and
the female headers

EEL4930 – Microprocessor Applications II4

Board Preparation

EEL4930 – Microprocessor Applications II5

Board Preparation

EEL4930 – Microprocessor Applications II6

Lab 1 : Part A
• Implement a Fletcher-16 checksum. The algorithm is discussed in the lab

manual and on Wikipedia.
• You can implement the simpler “straightforward” fletcher-16 implementation

rather than the optimized one.

• You have to write your main function in C and have it call an assembly subroutine.

• Within the assembly code you have to call a C function.

• You have to write the fletcher code in C too and compare the output with the
assembly version.

• If the check passes you have to send a message through the UART

EEL4930 – Microprocessor Applications II7

CCS
• Is based on eclipse

• Select a workspace

EEL4930 – Microprocessor Applications II8

CCS

• Create new project: File->New->CCS
Project

• Have the board connected and then select
the MSP432 family with the MSP432P401R
device.

• The debugger should be configured
automatically

EEL4930 – Microprocessor Applications II9

CCS

EEL4930 – Microprocessor Applications II10

Board Support Package (BSP)
• A library for high level functions for hassle-free operations on a specific board.

This is in addition to the CMSIS interface that is included by default.

• TI provides the DriverLib which you can download from canvas

• Download it and include in a new folder called BoardSupportPackage

EEL4930 – Microprocessor Applications II11

UART from driverLib

• Right click on project-
>properties->include Options
(search for this using the
search bar).

EEL4930 – Microprocessor Applications II12

UART from DriverLib

/* Configuratin for UART */
static const eUSCI_UART_Config Uart115200Config =
{

EUSCI_A_UART_CLOCKSOURCE_SMCLK, // SMCLK Clock Source
6, // BRDIV
8, // UCxBRF
0, // UCxBRS
EUSCI_A_UART_NO_PARITY, // No Parity
EUSCI_A_UART_LSB_FIRST, // LSB First
EUSCI_A_UART_ONE_STOP_BIT, // One stop bit
EUSCI_A_UART_MODE, // UART mode
EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION // Oversampling

};

EEL4930 – Microprocessor Applications II13

UART from driverLib

EEL4930 – Microprocessor Applications II14

UART from driverLib

EEL4930 – Microprocessor Applications II15

UART from driverLib
• Use the build icon to compile and the debug icon program the board.

• Use View->Terminal to open the terminal (serial port).

• Configure to the COM port that is connected to the port with the baud-rate
(115200)

EEL4930 – Microprocessor Applications II16

Fletcher16 in C

EEL4930 – Microprocessor Applications II17

Linking C and Assembly (ASM)

• fletcher16 is an ASM function

• This takes in a pointer to uint8_t
and an int count and returns a
uint16_t

• The output of the ASM function is
assigned to the returned variable

• fletcher16 needs to be defined
in a .s file that is linked to the
program.

• If the file is included in the source
directory CCS will hopefully pick it up.

EEL4930 – Microprocessor Applications II18

Linking C and Assembly (ASM)
• To make the function C callable, we must pretend we

are the compiler and use the registers in the same
way

• R0-R3 are the initial registers used to pass parameters
into and out of a function. R12 is a special register for
intra-procedure communication. These registers must
be saved before calling the function (save-on-call)

• If more the 4 registers are needed, the stack is
utilized

• R4-R11 (and R14) must be saved by the called
function (save-on-entry)

• If the function returns a value it places it in R0.

• R13-R15 are SP, LR, and PC

http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf

http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf

EEL4930 – Microprocessor Applications II19

Linking C and Assembly (ASM)
• .def : Functions or variables created that can be

accessed from other functions

• .ref : If this ASM function needed to access another
function/variable it would be specified here

• .thumb says that we are using thumb mode

• .align 2 is needed because when in thumb mode,
instructions are 16 bit rather than 32 bits

• .text signals start of code section

• fletcher is the name of the function and works like a
normal lable

• .asmfunc : Specify that we are starting a function
rather than a label

• BL : call subroutine (store PC in LR)

• BX : jump to register address

• End the function, align again, and end the file

http://downloads.ti.com/docs/esd/SLAU131K/Content/SLAU13
1K_HTML/assembler_directives.html

http://downloads.ti.com/docs/esd/SLAU131K/Content/SLAU131K_HTML/assembler_directives.html

EEL4930 – Microprocessor Applications II20

Lab 1 Part B
• Part B: Implement a RGB LED Driver based on LP3943 and I2C

communication.
• Initialize the I2C peripheral(eUSCI_B_2 port).

• Turn off all LEDs.

• Implement a function to change the color of 16 LEDs.

• Demonstration: Display the result of Lab1 Part A with LEDs in hex. You must use all
three colors(red, green, blue) to show that you can properly use the LED Driver.

• DO NOT use the function from DriverLib to initialize the I2C module.

• READ the LP3943 datasheet and MSP432 I2C tech detail before implementation!

• READ carefully about the EUSCI_B2 Registers usage.

http://www.ti.com/lit/ds/symlink/lp3943.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

http://www.ti.com/lit/ds/symlink/lp3943.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

Driver files
• Add new files to implement the LED

driver.

• Separate your LED driver with
definition(.c file) and implementation(.h
file)

EEL4930 – Microprocessor Applications II 21

EEL4930 – Microprocessor Applications II22

Address of I2C Slave

• Base address: 0b1100000(0x60)

• Hard wired ADR2, ADR1, ADR0(A2, A1
A0)

• LEFT LP3943: GND, GND, GND

• MIDDLE LP3943: GND, GND, VCC

• RIGHT LP3943: GND, VCC, VCC

• Address(Left to right): 0x60, 0x61, 0x62

EEL4930 – Microprocessor Applications II23

Modification of board
• Due to the wire connection issue.

• The colors LP3943 control should be: (Left to right) BLUE, GREEN, RED

BLUE
GREEN

RED

EEL4930 – Microprocessor Applications II24

Header file
• Use enum to specify the color you

are using.

• Put all the initialization code in one
init function.

• Implement a function to setup
the color of LED. (You can also
implement a function to change the
PWM mode of LED if you want.)

EEL4930 – Microprocessor Applications II25

Initialization

EEL4930 – Microprocessor Applications II26

Change the color
• Set each of the LEDs to the desire operating mode.

• You only need to implement ON
or OFF in this part.

EEL4930 – Microprocessor Applications II27

Change the color
• Generate data you want send via I2C.

• Set initial slave address since we are master.

• Generate START condition.

• Wait for buffer availability.

• LOOP: Fill TXBUF with the data for the LP3943.

• Wait for buffer availability. B LOOP

• Generate STOP condition.

EEL4930 – Microprocessor Applications II28

Change the color
• Registers you will be using in this part:

• eUSCI_Bx I2C Slave Address Register

• eUSCI_Bx Control Word Register 0.

• eUSCI_Bx Transmit Buffer Register.

• eUSCI_Bx Interrupt Flag Register.

EEL4930 – Microprocessor Applications II29

Test with your driver
• A simple example to test your driver.

EEL4930 – Microprocessor Applications II30

Lab 1 : Part C
• Create LED animated color patterns using a timer interrupt (SYSTICK) and

a button interrupt
• Initialize the timer and the button interrupts

• Write interrupt handlers that will use the LED library to change the state of the
LEDs.

• Enter sleep mode instead of software loop when waiting for interrupts

EEL4930 – Microprocessor Applications II31

MSP432x Interrupts
• Exception states: (Inactive) -> (Pending) -> (Active) -> (Active & Pending)

• A higher priority Interrupt can preempt a lower priority one.

• A priority equal to the current active ISR is set to active & pending.

• A priority lower than the current active ISR sets the state to pending.

• On entry: The vector is fetched from the vector-table and the context (?) is saved prior
to entry to the first level of interrupts.

• If the value of the PC when jumping to the ISR is loaded back into the program-counter
the system detects a return from interrupt and sets the exception state back to inactive.

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II32

MSP432x NVIC
• MSP432x NVIC supports 64 external interrupt lines at 8 levels of priority (highest 0).

• Interrupts must be enabled through the NVIC before they can be serviced.

• ICERx for disabling and ISERx for enabling.

• ICPRx for disabling and ISPRx for setting and clearing the pending status. (STIR?)

• IABRx for reading which interrupt is active

• IPRx register for setting priorities

• A higher priority Interrupt can preempt a lower priority one.

• The context (?) is saved prior to entry to the first level of interrupts.

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II33

MSP432x SysTick Interrupt
• SysTick can create system interrupts

handled by system handlers.

• Its priority is configurable and defaults at
0.

• Its frequency on the MSP432P401R board
by default is 3MHz. You can read this
value with CS_getMCLK from the
DriverLib (search for similar functions in
CMSIS)

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

#include "msp.h"
#include "driverlib.h"

void SysTick_Handler() {
// called every second
}

void main(void)
{

SysTick_Config(3000000);
SysTick_enableInterrupt();

while(1);
}

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II34

MSP432x SysTick Interrupt
• Always read inside of the library functions. If things fail you will know what is

going on.

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{

if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{

return (1UL); /* Reload value impossible */
}

SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |

SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */

return (0UL); /* Function successful */
}

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II35

MSP432x Port Interrupts
• Four GPIO Ports: Multiple functionalities on each pin.

• PxIN, PxOUT, PxDIR, PxREN, PxDS, PxSEL0, PxSEL1, PxIES,

PxIE, PxIFG registers related to the port.

• Ports can cause interrupts and events.

• Buttons are connected as follows:
• B0 : P4.4

• B1 : P5.5

• B2 : P5.4

• B3 : P4.5

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

P4->DIR &= ~BIT4;
P4->IFG &= ~BIT4;// P4.4 IFG cleared
P4->IE |= BIT4; // Enable interrupt on P4.4
P4->IES |= BIT4; // high-to-low transition
P4->REN |= BIT4; // Pull-up resister
P4->OUT |= BIT4; // Sets res to pull-up

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II36

MSP432x Port Interrupts

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

void main(void)
{

P4->DIR &= ~BIT4;
P4->IFG &= ~BIT4;// P4.4 IFG cleared
P4->IE |= BIT4; // Enable interrupt on P4.4
P4->IES |= BIT4; // high-to-low transition
P4->REN |= BIT4; // Pull-up resister
P4->OUT |= BIT4; // Sets res to pull-up

NVIC_EnableIRQ(PORT4_IRQn);

while(1) {}
}

void PORT4_IRQHandler(void){
P4->IFG &= ~BIT4; // must
clear IFG flag
// reading PxIV will

automatically clear IFG

// rest of ISR
}

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II37

MSP432x Low Power Modes (LPMs)

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

• Interrupt Driven Programming Embedded System design paradigm:
• All code is in interrupts.

• Main simply does the initialization

• Power down CPU when waiting for interrupts (can drastically improve battery life)

• MSP432 modes :
• LMP0 : shallowest sleep. CPU clock stops. Peripherals timers and ports still running

(400 ~ 500 uA at 3Mhz)

• LMP3,4: All high frequency clock consumers are disabled. Only RTC and WDT
running. longer wake-up time. (0.5 ~ 2 uA at 3Mhz)

• On interrupts the CPU wakes up and goes back to sleep once the ISR is
done

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

EEL4930 – Microprocessor Applications II38

MSP432x LPM Mode

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf http://www.ti.com/lit/ug/slau356h/slau356h.pdf

void main(void)
{

P4->DIR &= ~BIT4;
P4->IFG &= ~BIT4;// P4.4 IFG cleared
P4->IE |= BIT4; // Enable interrupt on P4.4
P4->IES |= BIT4; // high-to-low transition
P4->REN |= BIT4; // Pull-up resister
P4->OUT |= BIT4; // Sets res to pull-up

NVIC_EnableIRQ(PORT4_IRQn);

while(1) {}
}

void main(void)
{

P4->DIR &= ~BIT4;
P4->IFG &= ~BIT4;// P4.4 IFG cleared
P4->IE |= BIT4; // Enable interrupt on P4.4
P4->IES |= BIT4; // high-to-low transition
P4->REN |= BIT4; // Pull-up resister
P4->OUT |= BIT4; // Sets res to pull-up

NVIC_EnableIRQ(PORT4_IRQn);

PCM_gotoLPM0(); // enter LPM mode
}

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau356h/slau356h.pdf

