
University of Florida EEL 4930 – Fall 2018 Real-time Embedded Systems

Electrical & Computer Engineering Dept. 10-Sep-18

Page 1/6

Lab 2: G8RTOS SCHEDULER AND SEMAPHORES

OBJECTIVES

In this lab, you will implement the structures and

functionality necessary for the main component of

your G8RTOS, the Thread Scheduler. You will also

implement simple spin-lock semaphores to allow for

thread synchronization and mutually exclusive

access of resources

REQUIRED MATERIALS

Hardware

• MSP432 Launchpad

• Sensors Booster Pack

• LED array module

Software

• Board Support Package (BSP)

• G8RTOS_Empty

• Lab 1 LED library

Part 1: Setting up BSP

You will follow these steps whenever making a
project using the BSP

1. Create a new CCS Project

2. Adding BSP to Project:

Add the BoardSupportPackage folder (found

in BSP.zip) to your project by dragging it

into CCS. Choose to link the files over.
Note: Be sure that your

BoardSupportPackage folder is in a

known file location. You will need to use

this in the future!

3. Updating your includes:

a. Right-click on your project and

select Properties.

b. Go to Build->Include Options.

c. In the “Add dir” section, click on

the green plus in the upper right

hand corner.

d. Locate and add the

BoardSupportPackage/DriverLib

folder

e. Click on the green plus again to add

another directory

f. Locate and add the

BoardSupportPackage/inc folder

4. At this point, you should be able to build

your project with only 2 warnings from the

library.

[variable "array" was set but never used]

[variable "v_pre_config_value_u8" was set

but never used]

You can ignore these.

Part 2: Integrating LED Library into BSP

The LED Drivers you created in your previous lab will

need to be integrated into the BSP. To do this, you will

need to accomplish these steps:

1. Add your C and H files to the

BoardSupportPackage src and inc folders in your

project.

2. In BSP.h add an #include to your driver’s H file

3. In BSP.c add your initialization function into the

BSP_InitBoard function

This is a good time to get familiar with the BSP by

writing some small demo applications.

At this point you are ready to begin designing your

Operating System. Before starting, you will need to

add the G8RTOS_Empty folder into your current

project. You will also need to add the

G8RTOS_Empty folder to your includes.

Part 3: Create OS structures

File: G8RTOS_Structures.h

The Thread Control Block (TCB) is responsible for

holding all relevant information regarding the status

of a given thread. For this lab, it should contain the

following fields:

a. Next TCB pointer

b. Previous TCB pointer

c. Stack pointer for the thread’s stack

You will add additional fields in subsequent labs.

Create the TCB structure in the appropriate header

file. See comments for supporting details.

Part 4: Fill in the two Initialization functions

File: G8RTOS_Scheduler.c

University of Florida EEL 4930 – Fall 2018 Real-time Embedded Systems

Electrical & Computer Engineering Dept. 10-Sep-18

Page 2/6

Lab 2: G8RTOS SCHEDULER AND SEMAPHORES

1. InitSysTick

a. Initialize SysTick to overflow every

1ms

b. You may use

ClockSys_GetSysFreq() to get the

current clock speed in Hz

2. G8RTOS_Init

Before configuring your operating system,

you must initialize it to a known starting

state. The G8RTOS_Init function will be the

first function called in your project to

accomplish this. The function needs to
accomplish the following:

a. Initialize system time to zero

b. Set the number of threads to zero

c. Initialize all hardware on the board

Part 5: Implement G8RTOS_AddThread

File: G8RTOS_Scheduler.c

Before launching your operating system, you must

add threads to the scheduler. The

G8RTOS_AddThread function will take in a

void/void function pointer to insert the thread into

the scheduler. It should accomplish:

a. Initializing a TCB for the given thread

b. Adding the TCB to the Round-Robin

scheduler list

c. Initializing the thread stack to hold a default

thread register context

Part 6: Implement Exception Handlers

Files: G8RTOS_Scheduler.c and

G8RTOS_SchedulerASM.s

To accomplish multithreading, you must use

exceptions begin the context switches.

The PendSV_Handler will be used to save a thread’s

context, call the scheduler, and load the next

scheduled thread’s context.

You will need to write this handler in assembly, in

G8RTOS_SchedulerASM.s, to have direct access to

the CPU’s registers.

The SysTick_Handler in G8RTOS_Scheduler.c will

be used to provide a constant quantum for each

thread before preemption. For this lab, this handler

will simply trigger the PendSV exception. In the

future, this handler will have more responsibilities.

Part 7: Implement G8RTOS_Scheduler

File: G8RTOS_Scheduler.c

The scheduler will be called by the PendSV_Handler

and will be responsible for choosing the next TCB to

run. For this lab’s Round-Robin scheduler, the

G8RTOS_Scheduler function will set the pointer,

CurrentlyRunningThread, to the currently running

thread’s ‘next’ (nextTCB).

Part 8: Implement G8RTOS_Launch and

G8RTOS_Start

Files: G8RTOS_Scheduler.c and

G8RTOS_SchedulerASM.s

When you have finished configuring G8RTOS, your

OS is now ready to launch. To start the OS, you

must arm the SysTick and PendSV exceptions, set

the CurrentlyRunningThread to the first thread in the

scheduler, load the context of said thread into the

CPU, and enable interrupts. This task will be split

into two functions.

1. G8RTOS_Launch:

This C function will be called from main

and will accomplish the following:

a. Set CurrentlyRunningThread

b. Initialize SysTick

c. Set the priorities of PendSV and

SysTick to the lowest priority

d. Call G8RTOS_Start

2. G8RTOS_Start:

This assembly function will accomplish the

following:

a. Loads the currently running thread’s

context into the CPU

b. Enable interrupts

Part 9: Testing the scheduler

At this point you will write three simple threads to

make sure your scheduler works before adding any

semaphores or peripherals.

Main creation:

1. Create a main.c file in your project’s root

directory. The main needs to:

a. Create three functions called task0,

task1, and task2

b. Each task function will increment

their own counter variable. Name

them accordingly (i.e. task0 will

University of Florida EEL 4930 – Fall 2018 Real-time Embedded Systems

Electrical & Computer Engineering Dept. 10-Sep-18

Page 3/6

Lab 2: G8RTOS SCHEDULER AND SEMAPHORES

have counter0, task1 will have

counter1, etc.)

c. Call G8RTOS_Init

d. Add the threads to your scheduler

e. Launch the OS

Part 10: Implement semaphore functions

File: G8RTOS_Semaphores.c

You will now add the ability to synchronize threads

and control peripheral access through a naive

spinlock semaphore implementation.

1. G8RTOS_InitSemaphore

This function will assign the semaphore

pointer parameter the value of the value

parameter. Note: This should all be

accomplished in a critical section!

2. G8RTOS_WaitSemaphore

This function will check if the given

semaphore parameter is greater than 0. If it

is not, it will constantly check until it is.

During this “spinlock”, the function will

exit and reenter a critical section to allow

other threads to run. After the spinlock, the

semaphore will be decremented to indicate

ownership of the semaphore.

3. G8RTOS_SignalSemaphore

This function will increment the semaphore

to indicate releasing ownership of the

semaphore. Note: This is also a critical

section!

Part 11: Create a main file and three threads

Thread descriptions:

1. Thread 0:

a. Wait for the sensor I2C semaphore.

b. Read from the accelerometer’s x-

axis and save the value into a local

variable

c. Release the sensor I2C semaphore

d. Wait for the LED I2C semaphore

e. Output data to Red LEDS as shown

in Figure A.

f. Release the LED I2C semaphore

2. Thread 1:

a. Wait for the sensor I2C semaphore

b. Read from the light sensor and save

value into a local variable

c. Release the sensor I2C semaphore

d. Wait for the LED I2C semaphore

e. Output data to Green LEDS as

shown in Figure B.

f. Release the LED I2C semaphore

3. Thread 2:

a. Wait for the sensor I2C semaphore

b. Read from the gyro’s z-axis and

save value into a local variable

c. Wait for LED I2C semaphore

d. Output data to Blue LEDS as shown

in Figure C.

e. Release LED I2C semaphore
4. Threads.h will hold extern declarations of all

the threads as well as extern declarations of

the sensor and LED semaphores.

Thread creation:

1. Create a Threads.c to hold all threads and

semaphores in the root directory

2. Create a Threads.h file that references all the

semaphores to be initialized and references

the threads for main to see

Main:

2. Update your main.c file in your project’s

root directory to do the following:

a. Call G8RTOS_Init

b. Initialize the semaphores in

Threads.h

c. Add the threads in Threads.h to the

scheduler

d. Launch the OS

Project Explorer

At this point, your project explorer should resemble

the following:

Project:

- BSP Folder

- G8RTOS Folder

- main.c

- Threads.h

- Threads.c

University of Florida EEL 4930 – Fall 2018 Real-time Embedded Systems

Electrical & Computer Engineering Dept. 10-Sep-18

Page 4/6

Lab 2: G8RTOS SCHEDULER AND SEMAPHORES

Accel X > 14000

14000 > Accel X > 12000

12000 > Accel X > 10000

10000 > Accel X > 8000

8000 > Accel X > 6000

6000 > Accel X > 4000

4000 > Accel X > 2000

2000 > Accel X > 0

Accel X < -14000

-14000 < Accel X < -12000

-12000 < Accel X < -10000

-10000 < Accel X < -8000

-8000 < Accel X < -6000

-6000 < Accel X < -4000

-4000 < Accel X < -2000

-2000 < Accel X < 0

Figure A.

University of Florida EEL 4930 – Fall 2018 Real-time Embedded Systems

Electrical & Computer Engineering Dept. 10-Sep-18

Page 5/6

Lab 2: G8RTOS SCHEDULER AND SEMAPHORES

Light > 49000

49000 > Light > 45500

45500 > Light > 42000

42000 > Light > 38500

42000 > Light > 35500

35500 > Light > 31500

31500 > Light > 28000

28000 > Light > 26000

26000 > Light > 24500

24500 > Light > 21000

21000 > Light > 17500

17500 > Light > 14000

14000 > Light > 10500

10500 > Light > 7000

7000 > Light > 3500

Light < 3500

Figure B.

University of Florida EEL 4930 – Fall 2018 Real-time Embedded Systems

Electrical & Computer Engineering Dept. 10-Sep-18

Page 6/6

Lab 2: G8RTOS SCHEDULER AND SEMAPHORES

Gyro Z > 7000

7000 > Gyro Z > 6000

6000 > Gyro Z > 5000

5000 > Gyro Z > 4000

4000 > Gyro Z > 3000

3000 > Gyro Z > 2000

2000 > Gyro Z > 1000

1000 > Gyro Z > 0

Gyro Z < -7000

-7000 < Gyro Z < -6000

-6000 < Gyro Z < -5000

-5000 < Gyro Z < -4000

-4000 < Gyro Z < -3000

-3000 < Gyro Z < -2000

-2000 < Gyro Z < -1000

-1000 < Gyro Z < 0

Figure C.

	OBJECTIVES
	REQUIRED MATERIALS
	Part 1: Setting up BSP
	Part 2: Integrating LED Library into BSP
	Part 3: Create OS structures
	Part 4: Fill in the two Initialization functions
	1. InitSysTick
	Part 5: Implement G8RTOS_AddThread
	Part 6: Implement Exception Handlers
	Part 7: Implement G8RTOS_Scheduler
	Part 8: Implement G8RTOS_Launch and G8RTOS_Start
	Part 9: Testing the scheduler
	Part 10: Implement semaphore functions
	Part 11: Create a main file and three threads
	Project Explorer

