
Lab 2
G8RTOS IMPLEMENTATION

EEL4930 – Microprocessor Applications II1

EEL4930 – Microprocessor Applications II2

Overview
• Implement a basic RTOS on your board.

• You have to implement:
• OS Structures (Thread Control Block)
• OS Initialization functions (SysTick and Structures)
• A Round-Robin Scheduler
• Context Switching (PendSV handler)
• Thread related function (Add thread)
• Launch and start your RTOS

EEL4930 – Microprocessor Applications II3

Board Support Package
• You will be given a boardsupportpackage which a

bunch of useful functionality
• Create new CCS Project

• Follow the instructions in Lab 1 and add the new BSP

EEL4930 – Microprocessor Applications II4

Integrate the LED Library
• Integrate the LED library you created in Lab1 into the BSP
• Add the LED .c file into src and the LED library .h file into inc

folders of the BSP
• Add an #include “yourLEDLibrary.h” in BSP.h
• Add a call to the LEDinit function in your library to the _initBoard

function in the BSP.c file.

EEL4930 – Microprocessor Applications II5

RTOS
• Why an OS? Multi-tasking and

resource sharing

• Real-Time OS: OS where tasks have
deadlines. If the deadline is missed
the plant blows up.

• We want to reduce latency
• We want to reduce Jitter

High Jitter = Inconsistent Period

System

Event
t1

Response
t2

Latency
t2 –t1

EEL4930 – Microprocessor Applications II6

RTOS: Threads
• We have Multiple tasks one

CPU -> Time-multiplexed
system

• Tasks -> Threads . We run
one thread at the time.

• The scheduler will decide
which task gets to run at the
moment.

Threads
Unit of work to perform a specific

task

Background
Threads

Run whenever they can.
Consist of infinitely running loop.

Event Threads
Run in response to an event of

some sort.

Periodic
Threads
Triggered at a consistent time

interval. Ex: Timers

Aperiodic
Threads

Triggered randomly by events.
Ex: GPIO Toggle, Rcv Buffers, DMA

Complete

EEL4930 – Microprocessor Applications II7

RTOS: Threads
• Implementing threads?
• The components of a thread

• We want to be able to stop a thread. Leave it aside. And then pick it up
later. What is the minimum components we need for this?

Code
CPU Registers/Context

All of the Thread’s
memory including

its stack

EEL4930 – Microprocessor Applications II8

RTOS: Thread-control-block (TCB)
• Thread-control-block (TCB): a

data-structure for storing the
thread information. This is what
you need to develop in Part1.

• For Lab2 this looks like the
following.

• Create a struct and typedef it for
easy access.

Struct : Thread Control Block

int32_t * Stack Pointer

TCB * Next TCB

TCB * Previous TCB

uint32_t Sleep Count

Semaphore * Blocked

uint8_t Priority

bool Asleep

bool Alive

EEL4930 – Microprocessor Applications II9

RTOS: Scheduler
• Preemptive Thread Scheduling where the scheduler jumps in and stops

one thread and replaces it with another (preempts the thread).

Thread
A

Thread
B Thread

C

t

Scheduler

Thread A Executes Thread C Executes

Thread Quantum

Thread B Executes

Scheduler Preempts Thread C
and chooses next thread to run

…

void ThreadAExample()
{

/* Init */
int x = 0;

while(1)
{

/* Do some stuff */
x += ADC_Read();

}
} Scheduler Preempts Thread A

and chooses next thread to run

EEL4930 – Microprocessor Applications II10

RTOS: Scheduler
• Cooperative Thread Scheduling where the threads themselves yield the CPU to one

another

t

Thread
A

Thread
B Thread

C

t

Scheduler

Thread A Executes Thread C Executes

Thread A yields CPU control
when it has completed a section of its task.

Thread B
Executes

Thread B yields CPU control
when it has completed a section of its task.

…

void ThreadAExample()
{

/* Init */
int x = 0;

while(1)
{

/* Do some stuff */
x += ADC_Read();

/* Yield Control */
OS_Yield();

}
}

EEL4930 – Microprocessor Applications II11

RTOS: Scheduler
• We are looking for a round-robin scheduler in Lab2. Goes through a list and executes

each thread for a given time and then moves to the next one.

• Guarantees fairness.

• No concept of priority

t

Thread
A

Thread
C

Thread A Executes Thread C Executes

Thread Quantum

Thread B Executes …
t

Thread
B

Thread A Executes

EEL4930 – Microprocessor Applications II12

RTOS: Context Switching
• How to switch from one thread to another given that we have their two TCBs?

• Save the important stuff, switch to the new thread, later pick up the important stuff.
• Important stuff: The set of all registers a thread needs saved in order to correctly

resume execution at a later time is known as it’s execution context.
• For the ARM Cortex M4 (when not using floating point), a thread’s context consists

of the Status Register, Program Counter, Link Register and Registers R0-R12.

• In order to use multiple threads on a single CPU, we must be able to save the state if
one thread and restore the state of another, this is known as a context switch.

• We need to interrupt the current thread’s execution to perform a context switch
either voluntarily (cooperative) or nonvoluntarily (preemptive).

t

EEL4930 – Microprocessor Applications II13

RTOS: Context Switching

• Caused by Systick Timer reaching zero

• For our OS, it will interrupt every 1
millisecond.

• Increments a system time variable.

• Triggers the context switch interrupt.

• In the future, it will have more
responsibilities such as modifying
TCBs and running Periodic Events.

t

• Request for system-level service.

• Specifically created by ARM for
performing context switches in an
OS setting.

• Will be used for our context switch.

• Since we will be modifying CPU
register, the ISR will need to be
written primarily in Assembly.

Systick Interrupt PendSV Interrupt

• In Lab2 we use the following two interrupts for scheduling and context switching

EEL4930 – Microprocessor Applications II14

RTOS: Context Switching

t

• Context-switch done by

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A
Thread A

Thread A

Thread A
Thread A
Thread A

Thread A

Stack A

TCB A

Thread A
Application

Stack Pointer

CurrentlyRunningThread

EEL4930 – Microprocessor Applications II15

RTOS: Context Switching

t

• Context-switch done by:
• Calling PendSV through software-

triggered interrupt (ICSR) from the
Systick handler. (pushes R0-R3, R12-
R15, PSR to the stack automatically)

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A
Thread A

Thread A

Thread A
Thread A
Thread A

Thread A

Stack A

TCB A

Thread A
Application

Stack Pointer

CurrentlyRunningThread

EEL4930 – Microprocessor Applications II16

RTOS: Context Switching

t

• Context-switch done by:
• Calling PendSV through software-

triggered interrupt (ICSR) from the
Systick handler. (pushes R0-R3, R12-
R15, PSR to the stack automatically)

• PendSV handler should push the rest of
the registers (R4-R11) to stack.

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A
Thread A

Thread A

Thread A
Thread A
Thread A

Thread A

Stack A

TCB A

Thread A
Application

Stack Pointer

CurrentlyRunningThread

EEL4930 – Microprocessor Applications II17

RTOS: Context Switching

t

• Context-switch done by:
• Calling PendSV through software-triggered

interrupt (ICSR) from the Systick handler.
(pushes R0-R3, R12-R15, PSR to the stack
automatically)

• PendSV handler should push the rest of the
registers (R4-R11) to stack. Now we are
done with saving Thread-A’s context.

• Call the scheduler to update
CurrentlyRunningThread.

• Load the new-thread’s (Thread-B’s) stack
pointer. This should point to the top of
Thread-B’s context.

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A
Thread A

Thread A

Thread A
Thread A
Thread A

Thread A

Stack A

TCB A

Stack Pointer

CurrentlyRunningThread

Thread B
Application

Thread B

EEL4930 – Microprocessor Applications II18

RTOS: Context Switching

t

• Context-switch done by:
• Calling PendSV through software-triggered

interrupt (ICSR) from the Systick handler.
(pushes R0-R3, R12-R15, PSR to the stack
automatically)

• PendSV handler should push the rest of the
registers (R4-R11) to stack. Now we are
done with saving Thread-A’s context.

• Call the scheduler to update
CurrentlyRunningThread.

• Load the new-thread’s (Thread-B’s) stack
pointer. This should point to the top of
Thread-B’s context.

• Pop Thread-B’s R4-R11 (they were pushed
during the context-save of Thread-B).

Thread A

Thread A

Thread A

Thread A

Thread A

Thread A
Thread A
Thread A

Thread A

Stack A

TCB A

Stack Pointer

CurrentlyRunningThread

Thread B
Application

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B
Thread B

Thread B

EEL4930 – Microprocessor Applications II19

RTOS: Context Switching

t

• Context-switch done by:
• Calling PendSV through software-triggered

interrupt (ICSR) from the Systick handler.
(pushes R0-R3, R12-R15, PSR to the stack
automatically)

• PendSV handler should push the rest of the
registers (R4-R11) to stack. Now we are
done with saving Thread-A’s context.

• Call the scheduler to update
CurrentlyRunningThread.

• Load the new-thread’s (Thread-B’s) stack
pointer. This should point to the top of
Thread-B’s context.

• Pop Thread-B’s R4-R11 (the ones we
pushed during context save).

• Returning from PendSV will pop the
remaining registers for Thread-B. Thread-B
should have all of its context now.

Stack A

TCB A

Stack Pointer

CurrentlyRunningThread

Thread B
Application

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

Thread B

EEL4930 – Microprocessor Applications II20

RTOS: Context Switching

t

• ASM skeleton will be provided to you:

; Functions Defined
.def G8RTOS_Start, PendSV_Handler

; Dependencies
.ref CurrentlyRunningThread, G8RTOS_Scheduler

.thumb; Set to thumb mode

.align 2; Align by 2 bytes (thumb mode uses
allignment by 2 or 4)
.text; Text section

; Need to have the address defined in file
; (label needs to be close enough to asm code to
be reached with PC relative addressing)
RunningPtr: .field CurrentlyRunningThread, 32

; PendSV_Handler
; - Performs a context switch in G8RTOS
; - Saves remaining registers into thread stack
;- Saves current stack pointer to tcb
;- Calls G8RTOS_Scheduler to get new tcb
;- Set stack pointer to new stack pointer from new tcb
;- Pops registers from thread stack
PendSV_Handler:

.asmfunc
;Implement this
.endasmfunc

; end of the asm file
.align
.end

EEL4930 – Microprocessor Applications II21

RTOS: Critical Section

t

• In multi-threading, multiple threads need access to the same device or shared
memory

• This causes threads to fight over the resource resulting in errors
• Ex. 1. Two threads writing to an LCD, the second thread interrupting the first
• Ex. 2. Two threads initializing a port differently. The order the threads are run in will determine the

final state of the port

• Critical section: the part of the program where shared memory is accessed

• Consequences of not handling critical sections are race conditions and flawed
results

• The above context switching code especially the saving and loading of registers
should be in a critical section.

EEL4930 – Microprocessor Applications II22

RTOS: Critical Section

t

• The Lab2 skeleton includes some assembly code and its relative C declarations
for entering and exiting critical sections.

; Functions Defined
.def StartCriticalSection, EndCriticalSection

.thumb; Set to thumb mode

.align 2; Align by 2 bytes (thumb mode uses
allignment by 2 or 4)
.text; Text section

; Starts a critical section
; - Saves the state of the current PRIMASK (I-bit)
; - Disables interrupts
; Returns: The current PRIMASK State
StartCriticalSection:
.asmfunc

MRS R0, PRIMASK; Save PRIMASK to R0 (Return Register)
CPSID I; Disable Interrupts
BX LR; Return

.endasmfunc

; Ends a critical Section
; - Restores the state of the PRIMASK given an input
; Param R0: PRIMASK State to update
EndCriticalSection:
.asmfunc

MSR PRIMASK, R0; Save R0 (Param) to PRIMASK
BX LR; Return

.endasmfunc

EEL4930 – Microprocessor Applications II23

RTOS: Add-Thread Function
• Before launching our operating system, we must initialize our threads and put them in the

scheduler.
• In Lab2, you will be creating a function Add_Thread that will initialize a thread and place it

in the scheduler given a Void-Void Function pointer.
• The first step to adding a thread is to check if there are any available empty threads in the

operating system.
• In order to keep our thread addition fast and deterministic, our TCBs and thread stacks will

be statically allocated. Therefore these is a limited number of TCBs and accompanying stacks
available.

• The operating system keeps track of the number of threads currently in the scheduler with a
NumThreads Variable. To check if we are at our limit, we will check if NumThreads is
equal to our limit. If it is, the function will return an error code instead of adding a thread.

• If there is available space in the thread list the function will add a new TCB to the list. Set the
next and prev pointers.

EEL4930 – Microprocessor Applications II24

RTOS: Add-Thread Function
• The threadStacks is a static array that holds all the stack areas in memory.

• STACKSIZE is set to 1024.
• When initializing a thread we have to note that when the first context-switch arrives and

picks up our thread it expects a full execution context (R0-R15, PC, PSR). Simply focus on how
you implemented the context-switch and what it expects from the stack. For the context
switch described earlier the thread initialization looks like this:

• R0-R15 to dummy values.
• PC to the thread’s function pointer (the void-void function pointer that the Add_Thread function receives)
• PSR to some default value that has the thumb-bit set.
• The stack-pointer in the TCB struct to the top of all of these (

&threadStacks[threadnum][STACKSIZE-16] because the stack grows from high addresses to low
ones).

/* Thread Stacks */
static int32_t threadStacks[MAX_THREADS][STACKSIZE];

RTOS: Add-Thread

TCB

Stack Pointer

Prev Next

First thread to be added

Stack Pointer

Prev Nex
t

Stack Pointer

Prev Nex
t

Stack Pointer

Prev Nex
t

TCB

Stack Pointer

Nex
t

Prev

Multiple threads in a
round-robin scheduler

EEL4930 – Microprocessor Applications II26

RTOS final steps
• The assembly context-switch function calls the C scheduler function which picks

the next thread to run. In Lab2 this function simply picks the next thread using
the next-pointer in the TCB.

• When you have finished configuring G8RTOS, your OS is now ready to launch. To
start the OS, you must arm the SysTick and PendSV exceptions, set the
CurrentlyRunningThread to the first thread in the scheduler, load the
context of said thread into the CPU, and enable interrupts. This task will be split
into two functions:
§ G8RTOS_Launch:
This C function will be called from main and will accomplish the following:

§ Set CurrentlyRunningThread
§ Initialize SysTick
§ Set the priorities of PendSV and SysTick to the lowest priority
§ Call G8RTOS_Start

§ G8RTOS_Start:
This assembly function will accomplish the following:

§ Loads the currently running thread’s context into the CPU
§ Enable interrupts

EEL4930 – Microprocessor Applications II27

RTOS final steps
• The assembly context-switch function calls the C scheduler function which picks the next thread

to run. In Lab2 this function simply picks the next thread using the next-pointer in the TCB.
• When you have finished configuring G8RTOS, your OS is now ready to launch. To start the OS,

you must arm the SysTick and PendSV exceptions, set the CurrentlyRunningThread to the first
thread in the scheduler, load the context of said thread into the CPU, and enable interrupts. This
task will be split into two functions:
§ G8RTOS_Launch:
This C function will be called from main and will accomplish the following:

§ Set CurrentlyRunningThread
§ Initialize SysTick
§ Set the priorities of PendSV and SysTick to the lowest priority
§ Call G8RTOS_Start

§ G8RTOS_Start:
This assembly function will accomplish the following:

§ Loads the currently running thread’s context into the CPU
§ Enable interrupts

You can test all of this by using a couple of threads to increment counters or play with
LEDs.

EEL4930 – Microprocessor Applications II28

RTOS: Semaphores
• Historically semaphores were first turn signals

• Generally speaking are indicators of intent

• In computer context, a semaphore is a type of flag

• Two uses of semaphores
• Mutual exclusion – Only one thread should be accessing a shared resource at a time

• Synchronization – Threads should not try and access data that has not been produced yet

• Make flag more informative: counter

• Mutex vs. Semaphore
• A mutex is a lock with only one state – locked/unlocked. A mutex can only be released by the thread that acquired it
• Similar to a binary semaphore, but cannot be signaled by another thread i.e. LCD

• A semaphore can have a value greater than 1 and can be signaled by any other thread
• i.e. 4K buffer split into 4 1K buffers

EEL4930 – Microprocessor Applications II29

RTOS: Semaphores
• Semaphore is a counter with three functions:

• G8RTOS_InitSemaphore(*SEMAPHORE_NAME, SEMAPHORE_VALUE)
• G8RTOS_WaitSemaphore(*SEMAPHORE_NAME)
• G8RTOS_SignalSemaphore(*SEMAPHORE_NAME)

• In G8RTOS_Semaphores.h, you should create a new type of:
• typedef int32_t semaphore_t

G8RTOS_InitSemaphore(semaphore_t *S, int32_t value)

• Enter a critical section and initialize the
semaphore in it.

• Pass the pointer to the semaphore around so
that its value can be modified

G8RTOS_WaitSemaphore(semaphore_t *S)

• Wait for semaphore to become non-zero.

• While waiting enter and exit the critical section
so that we won’t miss all the interrupts and get stuck
in the loop forever. OS_WaitSemaphore

*S == 0 ?

Disable interrupts Enable interrupts

Decrement semaphore
(*S)--

Return

Enable interrupts
Yes No

G8RTOS_SignalSemaphore(semaphore_t *S)

• Enter critical section.

• Increment the semaphore.

• Make sure to increment the semaphore it self not its pointer
(*S)++;

OS_SignalSemaphor

Mutual Exclusion
• An example use of semaphores for mutually exclusive tasks.

Synchronization
• Enter critical section.

• Increment the semaphore.

• Make sure to increment the semaphore it self not its pointer
(*S)++;

RTOS: Threads
• Implement the above semaphore functions in Lab2. Now we can add

threads to the RTOS and synchronize them using semaphore.

• We will use two semaphore to make sure the access to the LED I2C interface
and the sensors I2C interface is exclusive.

• You developed functions for writing to LEDs in Lab1. They should be included
in the BSP.

• Functions for reading sensor data are available in the BSP.
/* reading X location from accelerometer. Initialization is done
in the BSP initialization function*/
#include <BSP.h>
int16_t accelerometerX;
while(bmi160_read_accel_x(&accelerometerX));

/* reading Light sensor data. */
uint16_t lightData;
while(!sensorOpt3001Read(&lightData));

/* reading Light sensor data. */
int16_t gyroZ;
while(bmi160_read_gyro_z(&gyroZ));

RTOS: Threads
• You need the following three threads:

• Thread 0:
- waits for the sensor I2C semaphore.
- Reads accelerometer’s x-axis and saves it.
- Releases the sensor I2C semaphore.
- Waits for the LED I2C semaphore. Once available output data to red LEDs as shown in
the Lab manual. And then releases it.

• Thread 1:
- waits for the I2C semaphore.
- Reads the light sensor and save to local variable.
- Releases the I2C semaphore.
- Wait for the I2C semaphore. Once available output data to green LEDs as shown in the Lab
manual.

• Thread 2:
- waits for the I2C semaphore.
- Reads from the z-axis of the gyro and save into local variable
- Releases the I2C semaphore.
- Wait for the I2C semaphore. Once available output data to blue LEDs as shown in the Lab
manual. Don’t forget to release the semaphore by signaling it (signal function).

RTOS: Threads

• Write all the threads in a Threads.c file with a header file Threads.h as
well.

• Initialize the RTOS. Add the threads to the RTOS.
• Start the RTOS using the launch and start functions.

