
Lab 3
SLEEPING, PERIODIC EVENT THREADS, YIELDING

EEL4930 – Microprocessor Applications II1

EEL4930 – Microprocessor Applications II2

Overview
• Improve your implementation of RTOS in Lab 2.

• You have to implement:
• Improved semaphores, blocking, and yielding.

• Sleeping.

• Periodic event threads.

• FIFOs.

• You have to demonstrate:
• Periodic threads.

• Background communication via FIFO.

• Joystick, temperature sensor, light sensor usage.

EEL4930 – Microprocessor Applications II3

Improvement
• Blocked Semaphore

• We implemented a simple spinlock semaphore in Lab 2. While
checking the available flag, the CPU time was wasted.

• We improve this by add a blocked flag in TCB structure. If the
blocked flag was set, the blocked thread will yield the CPU control to
next thread during the SysTick handler.

EEL4930 – Microprocessor Applications II4

Improvement
• Improve “Semaphore Wait” part of the semaphore library

component. If the semaphore is not available, the blocked
semaphore of running thread should be initialized. Then yield
the control to next available thread.

EEL4930 – Microprocessor Applications II5

Improvement
• Improve “Signal Semaphore” part of the semaphore library

component. Go through the TCB list and unblock the first
thread that is blocked on the exact same semaphore. Move the
unlocked thread to the next thread to be executed.

EEL4930 – Microprocessor Applications II6

Improvement
• Improve the scheduler of RTOS. It must

verify the next TCB is not blocked. If it
is blocked, keep iterating the next TCB
through the linked list.

Struct : Thread Control Block

int32_t * Stack Pointer

TCB * Next TCB

TCB * Previous TCB

uint32_t Sleep Count

Semaphore * Blocked

uint8_t Priority

bool Asleep

bool Alive

EEL4930 – Microprocessor Applications II7

Sleeping
• Active State: Thread is ready to run but waiting for its turn

• Sleep State: Thread is waiting for a fixed amount of time
before it enters the active state again

• Blocked State: Thread is waiting on some external or
temporal event

• Blocking and sleeping help to free up the processor to perform
other tasks as opposed to just “spinning” (wasting its entire
time slice checking if the event condition is met)

EEL4930 – Microprocessor Applications II8

TCB Sleeping Parameters
• Two new parameters are added to the TCB:

• Sleep Count

• Asleep

Struct : Thread Control Block

int32_t * Stack Pointer

TCB * Next TCB

TCB * Previous TCB

uint32_t Sleep Count

Semaphore * Blocked

uint8_t Priority

bool Asleep

bool Alive

EEL4930 – Microprocessor Applications II9

OS_Sleep Function
▪ When a thread needs to wait a prescribed amount of time, it will call the function OS_Sleep

▪ OS_Sleep takes in a uint32_t Duration (time in milliseconds)

▪ The function will perform the following:

▪ 1. Initialize the Currently Running Thread’s Sleep Count

▪ Sleep Count = Duration + SystemTime

▪ 2. Put thread to sleep

▪ Asleep = True

▪ 3. Yield control of this thread to allow other threads to run (start context switch)

▪ In the SysTick handler, we will check every sleeping thread’s sleep count

▪ If the thread’s sleep count is equal to the current SystemTime, then that thread is to be woken
up. Otherwise, it remains sleeping.

EEL4930 – Microprocessor Applications II10

Handling Sleep Counts
• Implement this in SysTick handler

EEL4930 – Microprocessor Applications II11

Scheduler improvement
• Check for Sleeping status and Blocking status before

assigning the next thread control block as the currently
running thread within the scheduler function.

*Note: It is possible that all threads can be either sleeping or

blocked, in which case we enter an infinite loop here. To avoid

this for now, simply adding an idle thread will solve this

problem. Later on when we implement priority, this thread

will be the lowest priority thread.

EEL4930 – Microprocessor Applications II12

Alternate Sleeping Implementation

• Another way to implement sleeping is to remove the new sleeping thread from the
linked list of active threads, and adding it to new doubly linked list of sleeping threads

• This new list of sleeping threads will be sorted from smallest to highest sleep count

• Once the thread with the lowest sleep count equals the system time, that thread is
woken up

• Advantage: Now we only have to check one sleeping thread’s sleep count within the
SysTick handler as opposed to every initialized thread

EEL4930 – Microprocessor Applications II13

Alternate OS_Sleep Function

Linked List of Active Threads

Thread
A

void ThreadA()
{

while(1)
{

/* Does some process */

// Sleep for 300ms
G8RTOS_Sleep(300);

}
}

Linked List of Sleeping Threads

Thread D

Sleep Count
100 + Cst

Thread E

Sleep Count 250
+ Cst

Thread F

Sleep Count
500 + Cst

Thread A Thread B Thread C

EEL4930 – Microprocessor Applications II14

Alternate OS_Sleep Function

Linked List of Active Threads

Linked List of Sleeping Threads

Thread D

Sleep Count
100 + Cst

Thread E

Sleep Count 250
+ Cst

Thread F

Sleep Count
500 + Cst

Thread A

Sleep Count
300 + Cst

Thread A Thread B Thread C
Thread

A

void ThreadA()
{

while(1)
{

/* Does some process */

// Sleep for 300ms
G8RTOS_Sleep(300);

}
}

EEL4930 – Microprocessor Applications II15

Alternate OS_Sleep Function

Thread B Thread C

Linked List of Active Threads

Linked List of Sleeping Threads

Thread D

Sleep Count
100 + Cst

Thread E

Sleep Count 250
+ Cst

Thread F

Sleep Count
500 + Cst

Thread A

Sleep Count
300 + Cst

Thread
A

void ThreadA()
{

while(1)
{

/* Does some process */

// Sleep for 300ms
G8RTOS_Sleep(300);

}
}

EEL4930 – Microprocessor Applications II16

Alternate OS_Sleep Function

Now that the System

Time has incremented

enough times to equal

Thread D’s Sleep

Count, it is time to

add Thread D back

into the Active Thread

Linked List

Thread B Thread C

Linked List of Active Threads

Linked List of Sleeping Threads

Thread D

Sleep Count 0
+ Cst

Thread E

Sleep Count 150
+ Cst

Thread F

Sleep Count
400 + Cst

Thread A

Sleep Count
200 + Cst

EEL4930 – Microprocessor Applications II17

Alternate OS_Sleep Function

Thread B Thread C

Linked List of Active Threads

Linked List of Sleeping Threads

Thread D

Sleep Count 0
+ Cst

Thread E

Sleep Count 150
+ Cst

Thread F

Sleep Count
400 + Cst

Thread A

Sleep Count
200 + Cst

Since the list of active

threads is Round-Robin

(no priority), we can

simply add it to the back

of the linked list.

EEL4930 – Microprocessor Applications II18

Alternate OS_Sleep Function

Thread B Thread C

Linked List of Active Threads

Linked List of Sleeping Threads

Thread E

Sleep Count
150 + Cst

Thread A

Sleep Count 200
+ Cst

Thread F

Sleep Count
400 + Cst

Previous and Next TCB

pointers are assigned

accordingly
Thread D

EEL4930 – Microprocessor Applications II19

Issue of OS_Sleep
• You properly just noticed that the actual sleep time of

OS_Sleep function is not accurate. Thus if you need a more
accurate execution, you need time interruption and/or periodic
thread.

EEL4930 – Microprocessor Applications II20

Modification of RTOS
• Since we want the asleep thread yielding the control while

sleeping, there are few modifications we need to do.

• Structures. We need to add two more items in TCB.
• Sleep flag.

• Sleep count = Duration + Current SystemTime

• Scheduler.
• We need to continue to the next thread if the current running thread is

asleep.

• SysTick Handler
• Sets sleep counts to zero for every TCB if sleeping threads need to be

woken up

EEL4930 – Microprocessor Applications II21

Periodic Threads
• A periodic thread is simply a function that performs a unique task after a certain

amount of time has passed

• There are a few ways to trigger periodic threads:

1. Hardware Timer(s)

a) If the number of periodic tasks is small, we can allocate a unique hardware timer to handle
each task

b) Alternatively, we could use just one timer, give each periodic thread a current time and
period, and cycle through the events round-robin. After incrementing the thread’s current
time every interrupt, we run the task if the current time equals its period.

2. SysTick Timer

a) Much like 1.b, we can use the scheduler as the timer to call periodic events before performing
a context switch – this is how it will be implemented for G8RTOS

b) Example: Assume the SysTick is scheduled to interrupt every 1 ms, and we wish to run a
periodic task every 10 ms, we could call the periodic function after entering this ISR 10
times, keeping count the same way as 1.b.

EEL4930 – Microprocessor Applications II22

Adding a Periodic Thread in a Linked List

• Periodic Threads are
responsible for holding
information regarding the
event’s state, much like a
thread control block.

Struct : Periodic Event

Periodic Event * Next P-Event

Periodic Event * Previous P-Event

uint32_t Current Time

uint32_t Execute Time

void (*Handler)(void)

uint32_t Period

EEL4930 – Microprocessor Applications II23

Adding a Periodic Thread in a Linked List

• An “Add Periodic Event” function (called from the Main) will take in a function pointer
to the periodic handler and its corresponding period

• The function should exist within the scheduler’s source file

• It will initialize the periodic thread’s struct as well as handle the linked list data
structure

• It also increments the static number of periodic threads inside of the scheduler’s source
file

EEL4930 – Microprocessor Applications II24

Periodic Events within SysTick Handler

Note: Checking for sleeping is done after

checking periodic threads (next part)

EEL4930 – Microprocessor Applications II25

Periods with Common Multiples
• Suppose two periodic events exist with the following periods:

• Task B will always occur immediately after Task A, because its period is a multiple
Task A’s

• To combat this, we can give one P-Thread a difference initial current time other
than 0

• Example:
 Task A initial time = 0, Task B initial time = 1

 Task A will run 3 times after 6 SysTick interrupts, and Task B will run on the 7th tick

• Note: In order for this system to work properly, the maximum time to execute each
task much be very short compared to the period of the SysTick to avoid missing
interrupts

Task A
2 ms

Task B
8 ms

EEL4930 – Microprocessor Applications II26

Benefit of Using SysTick Timer

 The MSP432 has four 16-bit timers and two 32-bit timers

 By using the SysTick timer to schedule periodic events, we now have access to one more
timer than can be used for other tasks

 Example: Timer A’s interrupt period can be set to sample the ADC at a much faster rate
than a minimum of the 1ms SysTick timer

 This is considered to be an aperiodic events, that just so happens to be triggered
periodically

 The down-side to using the SysTick timer to schedule periodic events is that it
slightly slows down rate at which the system can perform context switches driven
by the SysTick

EEL4930 – Microprocessor Applications II27

Periodic vs Sleeping Threads

• Periodic threads are always in the active state

• Sleeping threads go between the active state and spinning in the
sleep state

• Periodic threads ensure a periodic time more accurately than
prescribing an amount of sleep time for a thread

• This is because when a thread is done sleeping, it doesn't necessarily
mean it is currently running, but simply means it is active and able
to run when it is its turn

EEL4930 – Microprocessor Applications II28

Inter-Process Communication
• We implement the FIFO structure as IPC

• First In First Out

• FIFO
• Maintain a linked list/array as queue

• Write to the end of queue

• Read from the begin of queue

• You have to implement
• FIFO Initialization

• Read from FIFO

• Write to FIFO

EEL4930 – Microprocessor Applications II29

Implementation of FIFO
• Requirement

• No more than 4 FIFOs in G8RTOS.

• You can static define FIFOs with array to improve performance.

• Read/Write an int32_t data from/into FIFO each time.

• Structures
• Buffer where data will be held: Int32_t Buffer[FIFOSIZE]

• Head pointer: int32_t *Head

• Tail pointer: int32_t *Tail

• Lost data count: uint32_t LostData

• Current Size semaphore: semaphore_t CurrentSize

• Mutex semaphore: semaphore_t Mutex

EEL4930 – Microprocessor Applications II30

Read function of FIFO
• Parameter: an int32_t value, which FIFO should be read.

• Return value: an int32_t value from the head of FIFO

• Mutex semaphore:
• Wait before reading from FIFO.

• In case the FIFO is being read from another thread.

• Current Size semaphore:
• Wait before reading from FIFO.

• In case the FIFO is empty.

• Done with the read:
• Update the head pointer.

• Signal the Mutex semaphore so other waiting thread can read.

EEL4930 – Microprocessor Applications II31

Write function of FIFO
• Parameter:

• an int32_t value, which FIFO should be read.

• an int32_t value, the data that should be wrote into the tail of FIFO.

• Current Size semaphore
• The value should be compared with the FIFOSIZE-1.

• Provides 1 buffer cell in case an interrupt happens between reading FIFO and incrementing its
head.

• If the value is larger than IFOSIZE-1, increment the lost data value and return an error code.

• Write the data
• Update the tail pointer

• Signal the Current Size semaphore and notify other waiting threads the
FIFO is not empty.

EEL4930 – Microprocessor Applications II32

Final demonstration
• 2 periodic threads

• 6 background threads

• 3 FIFOs

• 2 Semaphores

* Refer to the lab documentation and find

the details of implementation.

EEL4930 – Microprocessor Applications II33

Root Mean Square (RMS)
• Iterative formula

• 𝑥𝑘+1 =
1

2
𝑥𝑘 +

𝑛

𝑥𝑘
, 𝑘 ≥ 0, 𝑥0 = 𝑛

• Until 𝑥𝑘+1 − 𝑥𝑘 < 1

• Use Do-While loop

• Question:
• How to do ½ with shift value?

• How do we implement the
𝑛

𝑥𝑘
part of formula?

