
University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 1/5 Revision 0

Lab 4: Thread Priority, Dynamic Thread Creation and Destruction, Aperiodic
Events, and Interfacing with an LCD

OBJECTIVES
• Write a library with extensive functions that

allow to interface with a touchscreen color LCD
• Incorporate aperiodic event threads in our RTOS
• Convert our round-robin scheduler into a priority

scheduler

REQUIRED MATERIALS
Hardware

• MSP432 Launchpad
• Sensors Booster Pack

Software
• BSP
• Lab 3 G8RTOS

Part A: Interfacing with a touchscreen color LCD

Please look over the ILI9325C and XPT2046 datasheets
before continuing reading this lab document.

On Canvas, you will find a header file and source
file for the LCD driver library you will write. Most
functions you will write, however some are provided
to you for the sake of time. The header file contains
defines for various registers used to configure the
LCD. Additionally, the functions you are required to
write have been commented on a high level for you.

Provided Functions:

LCD_Init(): Initializes the LCD

The provided LCD initialization function does
most of the work for you, however you will need to
initialize the SPI peripheral yourselves (use no pre-
scaler for maximum performance) and enable the
interrupt on P4.0 for the touchscreen if the user
indicates to do so. Before configuring any registers,
the LCD needs to be reset, so a simple low-true reset
function is included in the source file and has been
implemented for you.

PutChar(): Outputs a character to the display at
some coordinate. This utilizes the ASCII library
provided to you.

LCD_Text(): Outputs a string to the LCD

LCD_WriteIndex(): Sets the address for the
register we want to write to

LCD_WriteData(): Writes 16-bit data to the
register specified by LCD_WriteIndex()

LCD_ReadData(): Reads 16-bit data from the
register specified by LCD_WriteIndex()

LCD_Write_Data_Start(): Sends out the starting
condition for continuous data transmission. This will
be useful for reasons mentioned in the
LCD_DrawRectangle() function description.

Functions You Will Write:

LCD_DrawRectangle(): Draws rectangle with
specified color

You’ll notice that in the GUI_Text() function, the
screen area is set to span the entire area again. This
is because there is an optimization method we can
exploit for drawing rectangles that will prove very
useful to us in our applications. Page 34 in the
datasheet shows the timing diagram for continuous
data transmission, which allows us to write a
constant stream of data without needing to raise and
lower the CS after every transmission. Page 63 of
the datasheet shows the automatic incrementing of
the destination address when the entry mode register
is set accordingly. Look over the LCD_Init function
to see how this is configured for the orientation on
our board.

So, whenever we want draw a rectangle, we can
change the span of the screen size, and send out
continuous data to the screen with the specified
color, and the destination will increment
automatically for us, saving a huge amount of time!

LCD_Clear(): Clears the screen with the specified
color

LCD_SetPoint(): Draws one pixel with specified
coordinate and color

LCD_Write_Data_Only(): Sends out only data
(useful for continuous data transmission)

LCD_ReadReg(): Reads data from specified
register

SPISendRecvByte(): Sends and receives a byte of
data over SPI

University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 2/5 Revision 0

Lab 4: Thread Priority, Dynamic Thread Creation and Destruction, Aperiodic
Events, and Interfacing with an LCD

LCD_WriteReg(): Writes data to specified register

LCD_SetCursor(): Places cursor at specified
coordinate

TP_ReadXY(): Reads touched X and Y coordinates
from LCD

Refer to pg. 23 for the timing diagram of the A-D
conversion of the touched X and Y coordinates, as
well as pg. 16 for finding out how to grab the X and
Y coordinates in the XPT2046 datasheet. The
defines for the two channels are in the LCD header
file.

You must keep in mind that when touching the
LCD, the screen will bounce! Therefore, you will
need to implement a debounce technique once
incorporated in the OS.

Tip 1: If you convert the A-D conversion to a
value between 0 and 1, and multiply by the max
screen size for either X or Y, you will get the
position of the touched point.

Tip 2: Carefully look at the timing diagram to
understand how to shift the bits to attain the correct
A-D result.

Part B: Convert Round-Robin Scheduler to
Priority Scheduler

Instead of using a round-robin scheduler, we will
introduce priority to our RTOS, where every thread
has its own priority. For example, this is one way to
guarantee we are writing to the LCD at 30fps, for
example. Or we can now make our idle thread the
lowest priority, where it is only run when all threads
are unable to run (either blocked or sleeping).

A uint8_t priority field will be added to the TCB
struct, which is set when the user calls
G8RTOS_AddThread(). The lower the priority
number, the higher the thread priority (we are using
the same convention as the ARM Cortex M
priorities). Since the priority will be a uint8_t, the
lowest priority possible is 255, and the highest will
be 0.

Now we need modify our scheduler to no longer
be strictly round-robin. The implementation will be
as follows:

- Set tempNextThread to be the next thread in
the linked list (allows for round-robin

scheduling of equal priorities) and iterate
through all the other threads

- If tempNextThread is neither sleeping or
blocked, we check if its priority value is less
than a currentMaxPriority value (initial
currentMaxPriority value will be 256)

- If it is, we set the CurrentlyRunningThread
equal to the thread with the higher priority,
and reinitialize the currentMaxPriority

- Set the next thread to check equal to the next
thread in the linked list to keep checking for
the rest of the threads (potentially of higher
priority).

Lastly, modify G8RTOS_Launch to choose the
thread with the highest priority to run first.

Part C: Dynamic Thread Creation and
Destruction

Currently, we cannot add or kill threads once our
OS has been launched. In order to accomplish this
task, we will need to modify the TCB struct and the
G8RTOS_AddThread function, add a function to
attain a thread’s ID, and add two new functions to
the scheduler: G8RTOS_KillSelf() and
G8RTOS_KillThread().

Begin by adding the following to the TCB struct:

- bool isAlive
- threadId_t threadID

o typedef threadId_t as a uint32_t
inside of scheduler header

- char threadName[MAX_NAME_LENGTH]
o define max to 16

The thread name will be convenient for us to

keep track of threads inside of the variable explorer
(not relevant to this part, but we’ll add it to the TCB
while we’re already modifying it).

The isAlive bit will indicate whether that thread
is alive, or if it’s been killed and no longer in the
linked list of active threads.

The thread ID will allow every thread to have its
unique ID so the user can request the ID of the
thread to kill and kill it while in another thread.

Modifications to G8RTOS_AddThread():

University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 3/5 Revision 0

Lab 4: Thread Priority, Dynamic Thread Creation and Destruction, Aperiodic
Events, and Interfacing with an LCD

The AddThread function will now take in not
only a thread’s priority, but also its name to
initialize. Since we want to be able to add a thread
while our OS is running, we will need to enter a
critical section and exit it prior to returning.

To create a unique ID, we while use a static
uint16_t IDCounter, which will increment every
time a TCB is initialized. The TCB’s threadID will
be:

((IDCounter++) << 16) | tcbToInitialize

where the tcbToInitialize is the first TCB not

alive. If there are none that are dead, you should
return THREADS_INCORRECTLY_ALIVE.

The last things to do is to initialize the char array
for the thread’s name and set the alive bit to true.

threadId_t G8RTOS_GetThreadId()

Create this function that returns the
CurrentlyRunningThread’s thread ID.

Thread Destruction Functions:

sched_ErrCode_t
G8RTOS_KillThread(threadId_t threadId):

The KillThread function will take in a threadId,
indicating the thread to kill. The implementation will
be as follows:

- Enter a critical section
- Return appropriate error code if there’s only

one thread running
- Search for thread with the same threadId
- Return error code if the thread does not exist
- Set the threads isAlive bit to false
- Update thread pointers
- If thread being killed is the currently running

thread, we need to context switch once
critical section is ended

- Decrement number of threads
- End critical section

sched_ErrCode_t G8RTOS_KillSelf():

The KillSelf function will simply kill the
currently running thread. The implementation will
be as follows:

- Enter a critical section
- If only 1 thread running, return appropriate

error code

- Change isAlive bit to false
- Update thread pointers
- Start context switch
- Decrement number of threads
- End critical section

Part D: Aperiodic Event Threads

Since an aperiodic event thread will essentially be
an interrupt routine, we will need to initialize the
appropriate NVIC registers accordingly. Too add an
aperiodic event, we provide it with a function
pointer that will serve as the ISR, a priority, and the
IRQ interrupt number.

sched_ErrCode_t
G8RTOS_AddAPeriodicEvent(void
(*AthreadToAdd)(void), uint8_t priority,
IRQn_Type IRQn):

The implementation will be as follows:
- Verify the IRQn is less than the last

exception (PSS_IRQn) and greater than last
acceptable user IRQn (PORT6_IRQn), or
else return appropriate error

- Verify priority is not greater than 6, the
greatest user priority number, or else return
appropriate error

- Use the following core_cm4 library functions
to initialize the NVIC registers:

o __NVIC_SetVector
o __NVIC_SetPriority
o NVIC_EnableIRQ

Note: To relocate an ISRs interrupt vector, the
interrupt vector table must be relocated to SRAM.
Depending on the compiler, this may or may not be
done automatically. Therefore, to be compliant with
all compilers, we want to relocate the interrupts
vector to SRAM ourselves. We will do this in
G8RTOS_Init(). The following code with relocate
the vector table to 0x20000000:

uint32_t newVTORTable = 0x20000000;
memcpy((uint32_t *)newVTORTable, (uint32_t *)SCB-
>VTOR, 57*4); // 57 interrupt vectors to copy
SCB->VTOR = newVTORTable;

Also note: Some of you might have an outdated version of
core_cm4.h, where the vector functions should be. We
have included the most up-to-date header file in the repo

University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 4/5 Revision 0

Lab 4: Thread Priority, Dynamic Thread Creation and Destruction, Aperiodic
Events, and Interfacing with an LCD

inside of libraries. Simply copy and paste the code in the
existing file in CCS.

Updated Error Codes for Scheduler:

/*
 * Error Codes for Scheduler
 */
typedef enum
{
 NO_ERROR = 0,
 THREAD_LIMIT_REACHED = -1,
 NO_THREADS_SCHEDULED = -2,
 THREADS_INCORRECTLY_ALIVE = -3,
 THREAD_DOES_NOT_EXIST = -4,
 CANNOT_KILL_LAST_THREAD = -5,
 IRQn_INVALID = -6,
 HWI_PRIORITY_INVALID = -7
} sched_ErrCode_t;

Periodic, Aperiodic Events, and Init Sempahores
for dynamic creation and destruction:
 In the functions used to add periodic, aperiodic
threads, and initSempahore, you will also want to
make these critical sections now so that they may be
called once the OS is running. You are not required
to make a kill periodic and kill aperiodic function,
although you can if you want to!

Application:

The goal of this part of the lab is to demonstrate
all the new features in G8RTOS, as well as the LCD
driver you wrote in an exciting way, as well as get
you started on writing some helpful functions that
you’ll use in lab 5.

General description of expected final product:

Program will launch with nothing on the screen,
waiting for a touch on the screen. Once touched, a
ball (4x4 rectangle in our case) should be drawn on
the screen with a random color (you may use the
time.h library for randomness). Depending on the
accelerometer x and y values, the ball will move
accordingly. To make it more interesting, every new
ball created should have a random speed (just a
scaling factor for its velocity). If one of the balls is
touched, you should delete the ball. There will be a
max number of 20 balls allowed at one time. If a ball
hits an edge, it should wrap around to the other side.

Initially, you will have the following threads active:

Read Accelerometer: (Background)

- Reads accelerometer x and y values
- Sleep for some amount of time

LCD tap: (Aperiodic)
- ISR for tap on the screen
- Should just set a flag saying a touch occurred

Wait for Tap: (Background)
- Waits for flag from ISR
- Reads touch coordinates
- Determines whether to delete or add ball
- If a ball is to be created:

o Write the coordinates to a FIFO
o Create a Ball thread

- If a ball is to be deleted, wait for any
semaphores the ball thread might be using
and call G8RTOS_KillThread with the ball’s
thread ID

- Delay for ~500ms to account for screen
bouncing before checking touch flag again

Idle (Low priority idle thread)
- Now only runs when all other threads are

either blocked or sleeping

Ball Thread: (Background)

- Finds a dead ball and makes it alive
- Read FIFO and initialize coordinates

accordingly
- Get thread ID and store it (I recommend

using a struct)
- Within while(1):

o Move position depending on velocity
and acceleration

o Update ball on screen and sleep for
~30ms

Alternative method for LCD bouncing:

In the aperiodic event, you can add a new thread,
then disable interrupts on the port's pin. This new
thread will determine whether a ball is to be created
or destroyed, take the appropriate action like
mentioned earlier, and then sleep for some amount
of time (enough until the bouncing has stopped),
then re-enable the interrupt on the port's pin, clear
the flag, and then kill itself.

Note: For the ball struct, a good thing to do would
be to store the following attributes:

University of Florida EEL 4930 – Fall 2018
Electrical & Computer Engineering Dept.
Page 5/5 Revision 0

Lab 4: Thread Priority, Dynamic Thread Creation and Destruction, Aperiodic
Events, and Interfacing with an LCD

- x position
- y position
- x velocity
- y velocity
- alive
- thread ID
- color

