
Lab 4
THREAD PRIORITY, DYNAMIC THREAD CREATION AND DESTRUCTION,
APERIODIC EVENTS, AND INTERFACING WITH AN LCD

1

2

OBJECTIVES
• Write a extended library to interact with LCD touchscreen.

• Write functions that allow to dynamically create and destroy
threads.

• Incorporate aperiodic event threads in previous RTOS.

• Convert the round-robin scheduler into a priority schedulers.

3

REQUIRED
• More Hardware

• HY28B Colorful LCD Touchscreen

• Software
• Lab 3 G8RTOS

• Board Support Package

4

PART A
• HY28B Resistive Touchscreen.

• ILI9325 LCD controller. (Embedded in your LCD screen)

• XPT2046 Touchscreen controller. (Embedded in your LCD screen)

• Library file template provided on Canvas.

https://www.buydisplay.com/download/ic/XPT2046.pdf

http://www.haoyuelectronics.com/Attachment/HY28B/ILI9325C%20datasheet.pdf

https://www.arduino.cc/en/Guide/TFT

https://os.mbed.com/components/HY28B-28-Touch-Screen-TFT-LCD-SPI-8-16-b/

https://www.buydisplay.com/download/ic/XPT2046.pdf
http://www.haoyuelectronics.com/Attachment/HY28B/ILI9325C datasheet.pdf
https://www.arduino.cc/en/Guide/TFT
https://os.mbed.com/components/HY28B-28-Touch-Screen-TFT-LCD-SPI-8-16-b/

5

PART A
• SPI Configuration/Connection

• Use P10SEL register to configure the SPI function

• P10.1 CLK

• P10.2 MOSI

• P10.3 MISO

• SPI configuration
• 3 Pin, 8 bit SPI master, high polarity for inactive state, 12MHz

• P10.4 LCD CS

• P10.5 TP CS

6

PART A
• Software design model

7

PART A
• LCD Interface

• LCD_Init

• Initializes the LCD hardware, remember to
initializes the SPI peripheral.

• PutChar

• Put a character to specified
location/coordinate.

• LCD_Text

• Put a string to specified location/coordinate.

• LCD_WriteIndex

• Set the address of register we want to write to

• LCD_WriteData

• Write 16 bit data to the register which
specified by LCD_WriteIndex

• LCD_ReadData

• Read 16 bit data to the register which
specified by LCD_WriteIndex

• LCD_Write_Data_Start

• Send out the starting condition of continuous
data

8

PART A
• LCD Interface

• LCD_initSPI

• SPISendRecvByte

• TP_ReadXY

• LCD_DrawRectangle

• LCD_Clear

• LCD_SetPoint

• LCD_Write_Data_Only

• LCD_ReadReg

• LCD_WriteReg

• LCD_SetCursor

9

PART A
• LCD_initSPI

• Initialize the SPI peripheral with predefined parameters

• 3 Pins, 8bit SPI master, and 12MHz

• SPISendRecvByte

• Interface to send and receive data with SPI

• You can use SPI_transmitData and SPI_receiveData from
DriveLib

• TP_ReadXY (XPT2046 Page 22, Differential Mode)

• TP_ReadX: SPI Command CHX

• TP_ReadY: SPI Command CHY

10

PART B
• Priority Scheduler

• Bool Alive

• Uint8_t Priority

• Guarantee 30fps LCD refresh

Struct : Thread Control Block

int32_t * Stack Pointer

TCB * Next TCB

TCB * Previous TCB

uint32_t Sleep Count

Semaphore * Blocked

uint8_t Priority

bool Asleep

bool Alive

11

PART B
• Priority Scheduler

Linked List of Threads

Thread A Thread B Thread C

tempNextThread

Thread D

Running Thread

12

PART B
• Priority Scheduler

• Not sleeping
Linked List of Threads

Thread A Thread B

Sleeping

Thread C

tempNextThread

Thread D

Running Thread

13

PART B

Linked List of Threads

Thread A Thread B Thread C

Blocked

tempNextThread

Thread D

Running Thread

• Priority Scheduler
• Not blocked

14

PART B

Linked List of Threads

Thread A Thread B Thread C

tempNextThread

Thread D

Running Thread

• Priority Scheduler
• Check Priority

15

PART C
• Thread related improvement

• Dynamic thread creation and destruction

• Modification of AddThread

• New function KillThread

• New function GetThreadId

• New function KillSelf

Struct : Thread Control Block

int32_t * Stack Pointer

TCB * Next TCB

TCB * Previous TCB

uint32_t Sleep Count

Semaphore * Blocked

bool Asleep

uint32_t ThreadID

char Threadname

bool isAlive

uint8_t Priority

16

PART C
• Modification of AddThread()

• Parameters
• void ((*threadToAdd)(void), uint8_t priority, char * name)

• New function KillThread
• Take in a threadId, indicating the thread to kill.

• Parameters
• threadId_t threadId

• New function KillSelf
• Simply kill the currently running thread

17

PART C
• New function GetThreadId

• Returns the
CurrentlyRunningThread’s thread ID.

• Easy to do.

• CurrentRunningThread->ThreadID

Struct : Thread Control Block

int32_t * Stack Pointer

TCB * Next TCB

TCB * Previous TCB

uint32_t Sleep Count

Semaphore * Blocked

bool Asleep

uint32_t ThreadID

char Threadname

bool isAlive

uint8_t Priority

18

PART D
• Aperiodic Event Threads

• Definition
• An event thread with an arrival pattern that lacks a bounded

minimum interval between subsequent instances.

• How do we implement it?
• Essentially be an interrupt routine

• Nested Vectored Interrupt Controller (NVIC)

• Initialize the appropriate NVIC registers accordingly

19

PART D
• Aperiodic Event Threads

• Parameters
• void ((*AthreadToAdd)(void), uint8_t priority, IRQn_Type IRQn)

• Routine
• Verify the IRQn is less than the last exception (PSS_IRQn) and greater than last

acceptable user IRQn (PORT6_IRQn), or else return appropriate error

• Verify priority is not greater than 6, the greatest user priority number, or else
return appropriate error

• Use the following core_cm4 library functions to initialize the NVIC registers
• __NVIC_SetVector

• __NVIC_SetPriority

• NVIC_EnableIRQ

20

PART D
• Aperiodic Event Threads

• Attention
• To relocate the ISR interrupt vector, the interrupt vector table should

be relocated into SRAM. Thus, you should put the following code
snippet into the RTOS initialization function.

// Relocate vector table to SRAM to use aperiodic events
uint32_t newVTORTable = 0x20000000;
memcpy((uint32_t *)newVTORTable, (uint32_t *)SCB->VTOR, 57*4);

// 57 interrupt vectors to copy
SCB->VTOR = newVTORTable;

21

Demonstration
• Program will launch with nothing on the screen, waiting for a touch on

the screen.

• Once touched, a ball (4x4 rectangle in our case) should be drawn on the
screen with a random color .

• Depending on the accelerometer x and y values, the ball will move
accordingly.

• Every new ball created should have a random speed.

• If one of the balls is touched, you should delete the ball.

• There will be a max number of 20 balls allowed at one time.

• If a ball hits an edge, it should wrap around to the other side.

