
Lab 5
CC3100 WIFI COMMUNICATION, MULTIPLAYER PONG GAME,
DESIGNING A FULL GAME PROTOCOL

1

2

OBJECTIVES
• Use priority-based multi-threading to implement a

multiplayer game over WiFi.
• No library development. But many many threads.
• The game structure and an API is given to you. You need to

fill in the body of the functions.

3

REQUIRED
• More Hardware

• C3100 Booster Pack

• Software
• Lab 4 G8RTOS
• Lab 4 LCDLib
• Board Support Package
• C3100 Support Package

• You will need at least two boards for testing. For that you can
pair up with a classmate.

• Note that the two players should be running the same code.

4

Game Description
• Game starts with no balls in the arena. Balls are added to the

game randomly although with a low probability.
• Initially, the ball color is white which means no one owns it.

Once it is hit it will take on a color and get owned by a player.
• Only if a ball that is owned by one player passes the other

player’s side the score is incremented.

5

Game Description
• The max number of balls allowed in the game is defined in

Game.h. To make the game even more interesting, the time
interval for how often a new ball is created will be
proportional to the current number of balls currently in play.

• You will be lighting the LEDs to keep track of the score.
• Once a new game is played, the winner’s overall score will be

incremented. The number of games won by each player will be
displayed on the left side of the screen.

6

Game.h

• The API for this lab is given in the Game.h header:

 void SendData(_u8 *data, _u32 IP, _u16 BUF_SIZE);
 _i32 ReceiveData(_u8 *data, _u16 BUF_SIZE);
 void initCC3100(playerType playerRole);

• Host IP address is fixed. Client IP address is decided through
DHCP.

7

Game.h

/*
* Struct to be sent from the
client to the host
*/
typedef struct
{

uint32_t IP_address;
int16_t displacement;
uint8_t playerNumber;
bool ready;
bool joined;
bool acknowledge;

} SpecificPlayerInfo_t;

/*
* General player info to be used
by both host and client
* Client responsible for
translation
*/
typedef struct
{

int16_t currentCenter;
uint16_t color;
playerPosition position;

} GeneralPlayerInfo_t;

8

Game.h

/*
* Struct of all the balls, only
changed by the host
*/
typedef struct
{

int16_t currentCenterX;
int16_t currentCenterY;
uint16_t color;
bool alive;

} Ball_t;

/*
* Struct to be sent from the host to the
client
*/
typedef struct
{

SpecificPlayerInfo_t player;
GeneralPlayerInfo_t

players[MAX_NUM_OF_PLAYERS];
Ball_t balls[MAX_NUM_OF_BALLS];
uint16_t numberOfBalls;
bool winner;
bool gameDone;
uint8_t LEDScores[2];
uint8_t overallScores[2];

} GameState_t;

9

Offset Drawing of Objects

• Draw only the difference of objects to save time:

head tail

10

Geometric Collision Detection

• Use the geometry of the shapes to detect collision rather than
quadratic search over their area:

• The speed of the balls can be dynamic. You decide their
dynamics.

head tail

center

len

11

Common Threads
• DrawObjects:

• Should hold arrays of previous players and ball positions
• Draw and/or update balls (you’ll need a way to tell whether

to draw a new ball, or update its position (i.e. if a new ball
has just been created – hence the alive attribute in the
Ball_t struct.

• Update players
• Sleep for 20ms (reasonable refresh rate)

12

Common Threads
• MoveLEDs:
• Responsible for updating the LED array with current

scores

13

Host Threads
• CreateGame:

• Only thread created before launching the OS
• Initializes the players
• Establish connection with client (use an LED on the

Launchpad to indicate Wi-Fi connection)
• Should be trying to receive a packet from the client
• Should acknowledge client once client has joined
• Initialize the board (draw arena, players, and scores)
• Add the following threads:

• GenerateBall, DrawObjects, ReadJoystickHost, SendDataToClient
,ReceiveDataFromClient , MoveLEDs (lower priority), Idle

• Kill self

14

Host Threads
• GenerateBall:
• Adds another MoveBall thread if the number of balls is less

than the max
• Sleeps proportional to the number of balls currently in play

15

Host Threads
• MoveBall:

• Go through array of balls and find one that’s not alive
• Once found, initialize random position and X and Y velocities, as well as

color and alive attributes
• Checking for collision given the current center and the velocity
• If collision occurs, adjust velocity and color accordingly
• If the ball passes the boundary edge, adjust score, account for the game

possibly ending, and kill self
• Otherwise, just move the ball in its current direction according to its

velocity
• Sleep for 35ms

16

Host Threads
• ReadJoystickhost:

• You can read the joystick ADC values by calling
GetJoystickCoordinates

• You’ll need to add a bias to the values (found experimentally) since
every joystick is offset by some small amount displacement and
noise

• Change Self.displacement accordingly (you can experiment with how
much you want to scale the ADC value)

• Sleep for 10ms
• Then add the displacement to the bottom player in the list of players

(general list that’s sent to the client and used for drawing)
• i.e. players[0].position += self.displacement

17

Host Threads
• SendDataToClient:
• Fill packet for client
• Send packet
• Check if game is done
• If done, Add EndOfGameHost thread with highest

priority
• Sleep for 5ms (found experimentally to be a good amount

of time for synchronization)

18

Host Threads
• ReceiveDataFromClient:
• Continually receive data until a return value greater than

zero is returned (meaning valid data has been read)
• Note: Remember to release and take the semaphore again

so you’re still able to send data
• Sleeping here for 1ms would avoid a deadlock
• Update the player’s current center with the displacement

received from the client
• Sleep for 2ms (again found experimentally)

19

Host Threads
• EndOfGameHost:
• Wait for all the semaphores to be released
• Kill all other threads (you’ll need to make a new function

in the scheduler for this)
• Re-initialize semaphores
• Clear screen with the winner’s color
• Print some message that waits for the host’s action to start

a new game
• Create an aperiodic thread that waits for the host’s button

press (the client will just be waiting on the host to start a
new game

• Once ready, send notification to client, reinitialize the
game and objects, add back all the threads, and kill self

20

Client Threads
• JoinGame:
• Only thread to run after launching the OS
• Set initial SpecificPlayerInfo_t strict attributes (you can

get the IP address by calling getLocalIP()
• Send player into to the host
• Wait for server response
• If you’ve joined the game, acknowledge you’ve joined to the

host and show connection with an LED
• Initialize the board state, semaphores, and add the

following threads
• ReadJoystickClient, SendDataToHost, ReceiveDataFromHost,

DrawObjects, MoveLEDs, Idle
• Kill self

21

Client Threads
• ReadJoystickClient:
• Read joystick and add offset
• Add Displacement to Self accordingly
• Sleep 10ms

22

Client Threads
• SendDataTohost:
• Send player info
• Sleep for 2ms

23

Client Threads
• ReceiveDataFromHost:
• Continually receive data until a return value greater

than zero is returned (meaning valid data has been
read)

• Note: Remember to release and take the semaphore
again so you’re still able to send data

• Sleeping here for 1ms would avoid a deadlock
• Empty the received packet
• If the game is done, add EndOfGameClient thread

with the highest priority
• Sleep for 5ms

24

Client Threads

• EndOfGameClient:
• Wait for all semaphores to be released
• Kill all other threads
• Re-initialize semaphores
• Clear screen with winner’s color
• Wait for host to restart game
• Add all threads back and restart game variables
• Kill Self

	Lab 5
	OBJECTIVES
	REQUIRED
	Game Description
	Game Description
	Game.h
	Game.h
	Game.h
	Offset Drawing of Objects
	Geometric Collision Detection
	Common Threads
	Common Threads
	Host Threads
	Host Threads
	Host Threads
	Host Threads
	Host Threads
	Host Threads
	Host Threads
	Client Threads
	Client Threads
	Client Threads
	Client Threads
	Client Threads

