
Lab 5
CC3100 WIFI COMMUNICATION, MULTIPLAYER PONG GAME, 
DESIGNING A FULL GAME PROTOCOL
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OBJECTIVES
• Use priority-based multi-threading to implement a 

multiplayer game over WiFi.
• No library development. But many many threads.
• The game structure and an API is given to you. You need to 

fill in the body of the functions.
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REQUIRED
• More Hardware

• C3100 Booster Pack

• Software
• Lab 4 G8RTOS
• Lab 4 LCDLib
• Board Support Package
• C3100 Support Package

• You will need at least two boards for testing. For that you can 
pair up with a classmate.

• Note that the two players should be running the same code.
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Game Description
• Game starts with no balls in the arena. Balls are added to the 

game randomly although with a low probability.
• Initially, the ball color is white which means no one owns it. 

Once it is hit it will take on a color and get owned by a player. 
• Only if a ball that is owned by one player passes the other 

player’s side the score is incremented.
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Game Description
• The max number of balls allowed in the game is defined in 

Game.h. To make the game even more interesting, the time 
interval for how often a new ball is created will be 
proportional to the current number of balls currently in play. 

• You will be lighting the LEDs to keep track of the score. 
• Once a new game is played, the winner’s overall score will be 

incremented. The number of games won by each player will be 
displayed on the left side of the screen.
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Game.h

• The API for this lab is given in the Game.h header:

 void SendData(_u8 *data, _u32 IP, _u16 BUF_SIZE);
 _i32 ReceiveData(_u8 *data, _u16 BUF_SIZE);
 void initCC3100(playerType playerRole);

• Host IP address is fixed. Client IP address is decided through 
DHCP. 
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Game.h

/*
* Struct to be sent from the 
client to the host
*/
typedef struct
{

uint32_t IP_address;
int16_t displacement;
uint8_t playerNumber;
bool ready;
bool joined;
bool acknowledge;

} SpecificPlayerInfo_t;

/*
* General player info to be used 
by both host and client
* Client responsible for 
translation
*/
typedef struct
{

int16_t currentCenter;
uint16_t color;
playerPosition position;

} GeneralPlayerInfo_t;
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Game.h

/*
* Struct of all the balls, only 
changed by the host
*/
typedef struct
{

int16_t currentCenterX;
int16_t currentCenterY;
uint16_t color;
bool alive;

} Ball_t;

/*
* Struct to be sent from the host to the 
client
*/
typedef struct
{

SpecificPlayerInfo_t player;
GeneralPlayerInfo_t

players[MAX_NUM_OF_PLAYERS];
Ball_t balls[MAX_NUM_OF_BALLS];
uint16_t numberOfBalls;
bool winner;
bool gameDone;
uint8_t LEDScores[2];
uint8_t overallScores[2];

} GameState_t;
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Offset Drawing of Objects

• Draw only the difference of objects to save time:

head tail
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Geometric Collision Detection

• Use the geometry of the shapes to detect collision rather than 
quadratic search over their area:

• The speed of the balls can be dynamic. You decide their 
dynamics.

head tail

center

len
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Common Threads
• DrawObjects:

• Should hold arrays of previous players and ball positions 
• Draw and/or update balls (you’ll need a way to tell whether 

to draw a new ball, or update its position (i.e. if a new ball 
has just been created – hence the alive attribute in the 
Ball_t struct. 

• Update players 
• Sleep for 20ms (reasonable refresh rate)
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Common Threads
• MoveLEDs:
• Responsible for updating the LED array with current 

scores 
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Host Threads
• CreateGame: 

• Only thread created before launching the OS  
• Initializes the players 
• Establish connection with client (use an LED on the 

Launchpad to indicate Wi-Fi connection) 
• Should be trying to receive a packet from the client 
• Should acknowledge client once client has joined 
• Initialize the board (draw arena, players, and scores)
• Add the following threads:

• GenerateBall, DrawObjects, ReadJoystickHost, SendDataToClient
,ReceiveDataFromClient , MoveLEDs (lower priority), Idle 

• Kill self 
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Host Threads
• GenerateBall:
• Adds another MoveBall thread if the number of balls is less 

than the max 
• Sleeps proportional to the number of balls currently in play
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Host Threads
• MoveBall: 

• Go through array of balls and find one that’s not alive
• Once found, initialize random position and X and Y velocities, as well as 

color and alive attributes 
• Checking for collision given the current center and the velocity 
• If collision occurs, adjust velocity and color accordingly 
• If the ball passes the boundary edge, adjust score, account for the game 

possibly ending, and kill self 
• Otherwise, just move the ball in its current direction according to its 

velocity 
• Sleep for 35ms 
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Host Threads
• ReadJoystickhost: 

• You can read the joystick ADC values by calling 
GetJoystickCoordinates

• You’ll need to add a bias to the values (found experimentally) since 
every joystick is offset by some small amount displacement and 
noise 

• Change Self.displacement accordingly (you can experiment with how 
much you want to scale the ADC value) 

• Sleep for 10ms 
• Then add the displacement to the bottom player in the list of players 

(general list that’s sent to the client and used for drawing)  
• i.e. players[0].position += self.displacement
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Host Threads
• SendDataToClient: 
• Fill packet for client 
• Send packet 
• Check if game is done 
• If done, Add EndOfGameHost thread with highest 

priority 
• Sleep for 5ms (found experimentally to be a good amount 

of time for synchronization)
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Host Threads
• ReceiveDataFromClient: 
• Continually receive data until a return value greater than 

zero is returned (meaning valid data has been read) 
• Note: Remember to release and take the semaphore again 

so you’re still able to send data 
• Sleeping here for 1ms would avoid a deadlock 
• Update the player’s current center with the displacement 

received from the client 
• Sleep for 2ms (again found experimentally)
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Host Threads
• EndOfGameHost:
• Wait for all the semaphores to be released
• Kill all other threads (you’ll need to make a new function 

in the scheduler for this) 
• Re-initialize semaphores 
• Clear screen with the winner’s color 
• Print some message that waits for the host’s action to start 

a new game 
• Create an aperiodic thread that waits for the host’s button 

press (the client will just be waiting on the host to start a 
new game 

• Once ready, send notification to client, reinitialize the 
game and objects, add back all the threads, and kill self 
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Client Threads
• JoinGame: 
• Only thread to run after launching the OS 
• Set initial SpecificPlayerInfo_t strict attributes (you can 

get the IP address by calling getLocalIP()
• Send player into to the host 
• Wait for server response 
• If you’ve joined the game, acknowledge you’ve joined to the 

host and show connection with an LED 
• Initialize the board state, semaphores, and add the 

following threads 
• ReadJoystickClient, SendDataToHost, ReceiveDataFromHost, 

DrawObjects, MoveLEDs, Idle
• Kill self 
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Client Threads
• ReadJoystickClient: 
• Read joystick and add offset 
• Add Displacement to Self accordingly 
• Sleep 10ms 
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Client Threads
• SendDataTohost: 
• Send player info 
• Sleep for 2ms 
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Client Threads
• ReceiveDataFromHost: 
• Continually receive data until a return value greater 

than zero is returned (meaning valid data has been 
read) 

• Note: Remember to release and take the semaphore 
again so you’re still able to send data 

• Sleeping here for 1ms would avoid a deadlock 
• Empty the received packet 
• If the game is done, add EndOfGameClient thread 

with the highest priority 
• Sleep for 5ms
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Client Threads

• EndOfGameClient: 
• Wait for all semaphores to be released 
• Kill all other threads 
• Re-initialize semaphores 
• Clear screen with winner’s color 
• Wait for host to restart game 
• Add all threads back and restart game variables 
• Kill Self
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