
The ARM[v7-M] Architecture
HISTORY, CPU MODES, INSTRUCTION SETS, EABI, & MORE

EEL4930 – Microprocessor Applications II1



EEL4930 – Microprocessor Applications II2

The ARM Way
• Designed and sold by ARM Limited

• Fabless company
• Licenses cores to other parties
• AMD, Apple, NXP, Qualcomm, Samsung, TI

• Different architecture versions
• ARMv7 comes in three profiles
• A: Applications processors

• R: Real time processors

• M: Embedded processors

• ARMv8 is latest architecture
• Incorporates TrustZone into the M profile

• Cores can be licensed alongside other ARM IP



EEL4930 – Microprocessor Applications II3

ARMv7 Architecture
• Defines 32 bit RISC CPU

• 16 integer registers

• Two instruction sets
• ARM (Aarch32):
• 32 bit instructions

• full access to register file

• Thumb-2 (T32)
• 16 bit instructions

• Most instructions operate on half the register set



EEL4930 – Microprocessor Applications II4

The ARMv7-M Profile
• Supports only Thumb-2 instructions

• Optional Floating Point Unit (FPU)

• Optional Memory Protection Unit
• This is not a Memory Management Unit



EEL4930 – Microprocessor Applications II5

The ARMv7-M Profile
• Two Operating States

• Privileged state
• Default state of CPU at reset

• Often used by RTOS kernels

• CPU switches to this state when handling exceptions

• All instructions can be executed

• All memory regions can be accessed (unless disallowed by MPU)

• Non-privileged state
• Often used for RTOS tasks

• Some instructions not available

• Some memory regions inaccessible



EEL4930 – Microprocessor Applications II6

The ARMv7-M Profile
• Two Operating Modes

• Thread mode
• Standard operating mode

• Entered upon reset or at exception return

• CPU can use process stack or main stack

• Handler mode
• Entered as a result of an exception

• Code runs in privileged environment

• CPU uses main stack



EEL4930 – Microprocessor Applications II7

ARMv7-M States
• Obtain state by reading control register

• Operation is permissible only in privileged state

• Switch to non-privileged mode
• Write to control register

• Can only be done from privileged software

• Switch to privileged mode
• Must be done through service request



EEL4930 – Microprocessor Applications II8

The Cortex-M4[F] Core
• F = have floating point unit

• Implements ARMv7-M

• Used in the MSP432 
Microcontroller (and many 
others)

• 3 Stage RISC Pipeline

• Branch Prediction

• 12 cycle interrupt latency
• Very important for real time 

systems



EEL4930 – Microprocessor Applications II9

The Cortex-M4 Memory Model
• Memory-mapped architecture

• Single, flat address space

• Instruction fetches are always half-word aligned (16 bit)

• All addressed in ARMv7-M are physical addresses
• No MMU Fairy to help you with your out of bounds accesses

• Unaligned accesses may trigger a fault

• The ARM Architecture is bi-endian
• Cortex-M4 in your board is configured as little-endian 



EEL4930 – Microprocessor Applications II10

The Cortex-M4 Memory Model
Address Name Type NX? Cache Description

0x00000000-

0x1fffffff

Code Normal 
Memory

- Write Through Typically ROM or flash memory

0x20000000-

0x3fffffff

SRAM Normal 
Memory

- Write Back, Write 
Allocate

SRAM region typically used for on-chip RAM

0x40000000-

0x5fffffff

Peripheral Device NX - On-chip peripheral address space

0x60000000-

0x7fffffff

RAM Normal 
memory

- Write Back, Write 
Allocate

Memory with write-back, write allocate cache attribute for 
L2/L3 cache support

0x80000000-

0x9fffffff

RAM Normal 
memory

- Write Through Memory with write-through cache attribute

0xa0000000-

0xbfffffff

Device Device, 
shareable

NX - Shared device space

0xc0000000-

0xdfffffff

Device Device, non-
shareable

NX - Non-shared device space

0xe0000000-

0xffffffff

System NX - System segment for PPB and vendor peripherals

Regions may not be used to its fullest.



EEL4930 – Microprocessor Applications II11

The MSP432 Memory Map



EEL4930 – Microprocessor Applications II12

The MSP432 Memory Map



EEL4930 – Microprocessor Applications II13

The MSP432 Memory Map



EEL4930 – Microprocessor Applications II14

The MSP432 Memory Map



EEL4930 – Microprocessor Applications II15

The MSP432 Memory Map



EEL4930 – Microprocessor Applications II16

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 0 0 0 1 1 0

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000000

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000000



EEL4930 – Microprocessor Applications II17

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 0 0 0 1 1 0

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000000

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000000



EEL4930 – Microprocessor Applications II18

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 0 0 0 1 1 0

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000000

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000000



EEL4930 – Microprocessor Applications II19

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 0 0 0 1 1 0

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000000

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000000



EEL4930 – Microprocessor Applications II20

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 0 0 0 1 1 0

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000000

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000000



EEL4930 – Microprocessor Applications II21

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 1 0 0 1 1 0

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000001

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000000



EEL4930 – Microprocessor Applications II22

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 1 0 0 1 1 1

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000001

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000001

0x22000004 00000001

0x22000000 00000001
ldr r0, =0x20000000

ldrb r1, [r0] /* read */

orr r1, r1, #1 /* modify */

strb r1, [r0] /* write */



EEL4930 – Microprocessor Applications II23

More on Bit-band Aliasing
Each bit in SRAM is aliased to a word in the SRAM bit-band alias area

0x20000000 0 0 1 0 0 0 1 1

0x2200001c 00000000

0x22000018 00000000

0x22000014 00000001

0x22000010 00000000

0x2200000c 00000000

0x22000008 00000000

0x22000004 00000001

0x22000000 00000001

ldr r0, =0x22000008

eor r1, r1, r1

str r1, [r0] /* write */



EEL4930 – Microprocessor Applications II24

ARMv7-M Registers and EABI

Register Name Usage

ip (r12) Intra-procedure-
call scratch register

Usage depends on tools and environment.

sp (r13) Stack pointer Points to bottom of stack
• msp: used when CPU is in privileged state
• psp: used when CPU is in non-privileged state

lr (r14) Link Register Points to subroutine return address

pc (r15) Program Counter Points to next instruction

• EABI: Embedded Application Binary Interface
• Set of rules for register usage

• Important when combining C and Assembly code



EEL4930 – Microprocessor Applications II25

ARMv7-M Registers and EABI
Register Usage

r0 First function argument, function return, scratch register 1

r1 Second function argument, function return, scratch register 2

r2 Third function argument, scratch register 3

r3 Fourth function argument, scratch register 4

r4 Variable register 1

r5 Variable register 2

r6 Variable register 3

r7 Variable register 4

r8 Variable register 5

r9 Platform register. Usage depends on platform.

r10 Variable register 7

r11 Variable register 8



EEL4930 – Microprocessor Applications II26

ARMv7-M Registers and EABI
• Variable registers (r4—r11) are callee saved

• Function being called is responsible for saving them

• Scratch registers (r0—r3) are caller saved
• Function doing the call is responsible for saving them

• Banked registers (msp/psp) must be accessed by special instructions

• Most Thumb2 instructions can only operate on lower half of register 
file (r0 – r7)



EEL4930 – Microprocessor Applications II27

The control register

Bit Description

nPRIV Defines execution privilege in thread mode

0 Thread mode has privileged access

1 Thread mode has unprivileged access

SPSEL Defines the stack pointer to be used

0 Use msp as the current stack pointer (sp has the value of msp)

1 Use psp as the current stack pointer (sp has the value of psp)

Value of 1 is reserved in Handler mode.

FPCA Defines whether the Floating Point extension is active in the current context

0 FP extension is not active

1 FP extension is active

Reserved

n
P
R
I
V

SP
SE

L

FP
C

A



EEL4930 – Microprocessor Applications II28

The xPSR Program Status Register
• Composed of three subregisters

• Application Program Status Register (apsr)
• Holds flags

• Can be written by unprivileged software

• Interrupt Program Status Register (ipsr)
• Used when CPU is in handler mode

• Holds exception number, otherwise value is 0

• Execution Program Status Register (epsr)
• Holds execution state bits



EEL4930 – Microprocessor Applications II29

The xPSR Program Status Register
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

apsr N Z C V Q GE

ipsr Reserved Vector number

epsr Reserved
I
C
I

/
I
T

T Reserved ICT/IT Reserved

Bit Description

N Negative Flag

Z Zero Flag

C Carry Flag

V Overflow Flag

Q DSP overflow and Saturation Flag

GE Greater than or Equals Flag



EEL4930 – Microprocessor Applications II30

The xPSR Program Status Register
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

apsr N Z C V Q GE

ipsr Reserved Vector number

epsr Reserved
I
C
I

/
I
T

T Reserved ICI/IT Reserved

Bit Description

ICI Interruptible-continuable instruction

IT Execution state bits of the it instruction

T Thumb state bit (must be preserved as 1)



EEL4930 – Microprocessor Applications II31

More on ICI bits
• When interrupt occurs during execution of ldm, stm, push, pop, 

vldm, vstm, vpush, or vpop the CPU will
• Temporarily halt the load/store multiple operation

• Stores the next register operand in the multiple operation to ICI

• After servicing the interrupt the CPU will
• Return to the register pointed to by ICI

• Resumes execution of the load/store multiple instruction



EEL4930 – Microprocessor Applications II32

More on IT bits
• Used with the it instruction

• Four instructions per block

• Each instruction can have the same condition

• Or have inverse condition of each other

• IT functionality supersedes ICI
• If interrupt occurs in an it block over an interruptible-continuable instruction, 

the instruction will be restarted from scratch after the interrupt is serviced



EEL4930 – Microprocessor Applications II33

ARM CMSIS
• The Cortex Microcontroller Software Interface Standard is a set of 

platform-independent API that allows for easy access to a Cortex MCU 
and its peripherals.

• CMSIS-Core: Startup and peripheral access

• CMSIS-RTOS: Generic RTOS interfaces

• CMSIS-DSP: DSP functions for Cortex processors

• CMSIS-DAP: Standard interface to the Cortex Debug Access Port



EEL4930 – Microprocessor Applications II34

ARM CMSIS vs TI
• At its time of release, MSP432 was not CMSIS compliant

• TI had their own set of drivers based on their MSP430's driverlib

• Today TI provides support for both CMSIS and driverlib
• Use CMSIS to avoid platform lockdown!



EEL4930 – Microprocessor Applications II35

ARM CMSIS-Core
File/Directory Contents

CMSIS/Documentation/Core All of CMSIS Core documentation

CMSIS/Core/Include Header files for CMSIS-Core
• core_cm4.h for Cortex-M4 devices

Devices Reference implementation for Cortex-M devices

Devices/_Template_Vendor CMSIS-Core Device Templates for extension by vendors



EEL4930 – Microprocessor Applications II36

Board Support Packages
• Additional libraries provided by vendor

• Contains functions and extra drivers for peripherals

• Contains toolchain support files
• Platform-specific linker scripts

• Platform-specific header files

• Platform-specific device trees

• BSPs are usually licensed so that they can be readily linked in by 
software and redistributed as part of it without restriction



EEL4930 – Microprocessor Applications II37

Thumb-2 Instruction Set
• Reduces most ARM instructions from 32 bit to 16 bit

• Reduced number of bits to encode registers

• Reduced number of bits for immediate constants

• Remove conditional field from instructions (uses it instead)

• Remove complex instructions

Chapter A4 of the ARMv7-M Architecture Reference Manual contains the 
reference for the Thumb-2 Instruction Set.



EEL4930 – Microprocessor Applications II38

Unified Assembler Language
• Common syntax for ARM and Thumb instructions

.syntax unified

• Instructions take three operands
• Two registers and a literal

• Three registers

• Instructions can be postfixed with s
• Updates flags in apsr

eor r0, r0, r0 /* 0 -> r0 */

eors r0, r0, r0 /* 0 -> r0, apsr_z = 1 */



EEL4930 – Microprocessor Applications II39

Addressing Mode: Offset
ldr r0, [r1, #4]

str r2, [r3, #-4]

• Offset is added or subtracted from base register

• Result is used as effective address for memory access

mem[r1 + 4] -> r0

r2 -> mem[r3 – 4]



EEL4930 – Microprocessor Applications II40

Addressing Mode: Pre-indexed
ldr r0, [r1, #4]!

str r2, [r3, #-4]!

• Offset is applied to base register

• Result is used as effective address for memory access

• Result is written back to base register

mem[r1 + 4] -> r0; r1 + 4 -> r1

r2 -> mem[r3 – 4]; r3 – 4 -> r3



EEL4930 – Microprocessor Applications II41

Addressing Mode: Pre-indexed
ldr r0, [r1], #4

str r2, [r3], #-4

• Address from base register is used as effective memory address

• Offset is applied to base register then written back

mem[r1] -> r0; r1 + 4 -> r1

r2 -> mem[r3]; r3 – 4 -> r3

• Operation is equivalent to a load, then add

• Machine encoding is smaller with pre-indexed operation



EEL4930 – Microprocessor Applications II42

Addressing Mode: Immediate
add r0, r0, #256

orr r0, r0, #(1 << 8)

• Immediate constant is used as an operand

r0 + 256 -> r0

r0 | 256 -> r0

• Instruction may be 32 bits wide



EEL4930 – Microprocessor Applications II43

Addressing Mode: Register
add r0, r0, r1

ldr r0, [r1, r2]

• Contents of register is used as an operand

r0 + r1 -> r0

mem[r1 + r2] -> r0



EEL4930 – Microprocessor Applications II44

Addressing Mode: Shifted Index
add r0, r0, r1, lsl #3

add r0, r0, r1, lsr #3

add r0, r0, r1, asr #3

• Contents of register is shifted, then used
• lsl: Logical shift left
• lsr: Logical shift right (pad left with 0)
• asr: Arithmetic shift right (pad left with sign bit)

r0 + 23*r1 -> r0

r0 + unsigned(r1)/23 -> r0

r0 + signed(r1)/23 -> r0



EEL4930 – Microprocessor Applications II45

The If-Then (it) Instruction
• Substitute for conditional execution in A and R profiles

it{x{y{z}}} condition

• x, y, z parameters express execution clause
• t: then
• e: else

• condition: any condition on the set
• lt, gt, eq, ne, ge, le
• If condition not met instruction becomes a nop



EEL4930 – Microprocessor Applications II46

The If-Then (it) Instruction
if(r0 == 0) {

r1 = r1 + 1;

} else {

r1 = r1 – 1;

}

Can be compiled to
tst r0, 0 /* r0 & 0, result discarded, flags set */

ite eq /* if equal (zero flag set), then */

addeq r1, r1, #1 /* perform addition */

subne r1, r1, #1 /* else, perform subtraction */



EEL4930 – Microprocessor Applications II47

The If-Then (it) Instruction
• C Language Runtime Requirements

• Variables with permanent store that are explicitly initialized go in .data

• Variables with permanent store that are not implicitly initialized to 0, placed in 
.bss

• The problem
• Embedded devices have no program loader

• Must initialize own data sections

• Program must
• Copy .data section from ROM/Flash to RAM

• Clear .bss section



EEL4930 – Microprocessor Applications II48

The If-Then (it) Instruction

Symbols are provided by linker script, names may change accordingly.

Symbol Use

__data_start Address of .data section in RAM

__data_end Address of end of .data section in RAM

__data_rom_start Address of initialization data in ROM/Flash

__bss_start Address of .bss section in RAM

__bss_end Address of end of .bss section in RAM



EEL4930 – Microprocessor Applications II49

The If-Then (it) Instruction
__do_copy_data:

ldr r4, =__data_start /* load start of .data section */

ldr r5, =__data_end /* load end of .data section */

ldr r6, =__data_rom_start /* load start of initialization */

1b: cmp r4, r5 /* check to see if we are done */

ittt lt /* if not done */

ldrlt r7, [r6], #4 /* load word from init data */

strlt r7, [r4], #4 /* and place it in .data, and */

blt 1b /* continue in loop until done */



EEL4930 – Microprocessor Applications II50

The If-Then (it) Instruction
__do_clear_bss:

ldr r4, =__bss_start /* load start of .bss section */

ldr r5, =__bss_end /* load end of .bss section */

eor r6, r6, r6 /* clear register r6 */

1b: cmp r4, r5 /* check to see if we are done */

itt lt /* if not done */

strlt r6, [r4], #4 /* clear word in .bss, and */

blt 1b /* continue in loop until done */



EEL4930 – Microprocessor Applications II51

The If-Then (it) Instruction
• Not allowed in an IT block

• cbz, cbnz, tbb, tbh, cps, cpsid, cpsie, setend

• Assembler directives

• Branch or other instruction that modifies pc are only allowed at end of 
IT block

• Can not branch to any instruction inside IT block unless returning 
from exception handler



EEL4930 – Microprocessor Applications II52

Register Lists
• Loading and storing multiple registers simultaneously

• Register range must be written in ascending order

push {r0, r1, r2, r3, lr}

pop {r0-r3, pc}

• Pushes r0 to r3, and lr into stack, with r0 at highest address; 
decrements sp

• Pops pc, and r3 to r0 from the stack with the value at the lowest 
address going into pc; increments sp



EEL4930 – Microprocessor Applications II53

Register Lists

sp
r0

r1

r2

r3

lr
sp

push {r0, r1, r2, r3, lr}

stmdb sp!, {r0, r1, r2, r3, lr}

In
cr

em
e

n
ti

n
g 

ad
d

re
ss

es

In
cr

em
e

n
ti

n
g 

ad
d

re
ss

e
s



EEL4930 – Microprocessor Applications II54

Register Lists
stmdb r0!, {r4, r5, r6, r7, r8, r9, r10, r11}

ldmia r0!, {r4-r11}

• Store multiple, decrement before
• Save register list starting at r0 minus eight words (32 bytes)
• Write back into r0 new value of r0 (r0 – 32 -> r0)
• r4 stored at highest address

• Load multiple, increment after
• Load register list starting at r0
• Value at lowest address is placed into r11
• Increment r0 by eight words (32 bytes)
• Save new value of r0 (r0 + 32 -> r0)



EEL4930 – Microprocessor Applications II55

Special Purpose Registers
• Registers that are not part of the integer (or floating point) register file

• control

• psp

• msp

• xPSR

• Can not be manipulated with conventional load/store or 
arithmetic/logic instructions
• mrs: copy special purpose register into integer register

• msr: copy integer register into special purpose register



EEL4930 – Microprocessor Applications II56

Special Purpose Registers
• Dropping privileges and switching stacks
__exit_execve:

ldr r4, task_stack_ptr /* load address of task stack */

ldr r5, entry_point /* load address of entry point */

mov lr, r5 /* save entry point into lr */

msr psp, r4 /* set process stack pointer */

mrs r4, control /* load control register */

orr r4, r4, #3 /* set nPRIV and SPSEL bits */

msr control, r4 /* save new control register */

eor r4, r4, r4 /* clear r4 */

eor r5, r5, r5 /* clear r5 */

bx lr /* and jump to task entry point */



EEL4930 – Microprocessor Applications II57

The Floating Point Unit
• Optional component in ARMv7-M

• IEEE 754 Compliant

• Single precision only!
• Supports only float

• Any double will be emulated in software 

• Must be enabled before using
• Otherwise an Usage Fault interrupt will be raised

• Compiler must be aware you want to use the FPU



EEL4930 – Microprocessor Applications II58

The Floating Point Unit
• Enable FPU using ARM CMSIS-Core

• Cortex Microcontroller Software Interface Standard

• Vendor Independent Hardware Abstraction Layer

• Included with microcontroller vendor’s Board Support Package (BSP)

/* in core_cm4.h, simplified */

#ifdef __FPU_PRESENT /* __FPU_PRESENT defined if there is an FPU */

#define __FPU_USED /* define this macro if the FPU is used */

#endif

• The SystemInit() function will enable the FPU



EEL4930 – Microprocessor Applications II59

The Floating Point Unit
• Enable the FPU using only C

• Enable coprocessors CP11 and CP10 in the Coprocessor Access Control 
Register (cpacr)

• Memory mapped register at address 0xe000ed88

#define cpacr (*((volatile unsigned int*)(0xe000ed88)))

void enable_fpu(void) {

cpacr |= (0xf << 20);

__dsb();

__isb();

}



EEL4930 – Microprocessor Applications II60

The Floating Point Unit
• Enable the FPU using only Assembly

• Coprocessors CP11 and CP10 must be enabled in cpacr

enable_fpu:

ldr r0, =0xe000ed88

ldr r1, [r0]

orr r1, r1, #(0xf << 20)

str r1, [r0]

dsb /* data synchronization barrier */

isb /* instruction sync barrier */

bx lr



The MSP432 and
Board Components
PERIPHERALS, SERIAL BUSES, & LP3943

EEL4930 – Microprocessor Applications II61



EEL4930 – Microprocessor Applications II62

MSP432 Peripherals
• Range of peripherals include

• MSP430-compatible peripherals

• MSP432-specific peripherals

• Supported by both TI's driverlib and CMSIS-Core

• Can be programmed directly in C or assembly without the need for 
libraries



EEL4930 – Microprocessor Applications II63

MSP432 Peripherals
• General purpose I/O

• Port Mapping Controller

• Timer_A module (MSP430 compatible peripheral)

• Timer32 module (ARM-specific timer)

• Enhanced Universal Serial Communications Interface (eUSCI, MSP430 
compatible)

• Real Time Clock module (RTC_C, MSP430 compatible)

• Watchdog Timer, ADC…



EEL4930 – Microprocessor Applications II64

MSP432 Peripherals
• Enhanced Universal Serial Communication Interface (eUSCI)

• Can handle UART, I2C, SPI, IrDA

• UART mode described in document number slau423

• I2C mode described in document number slau425

http://www.ti.com/lit/ug/slau423f/slau423f.pdf
http://www.ti.com/lit/ug/slau425f/slau425f.pdf


EEL4930 – Microprocessor Applications II65

Inter-Integrated Circuit Bus
• Two Wire communication protocol

• SDA: serial data

• SCL: serial clock

• Multi-master, multi-slave system

• Master device always initiates transmission

• Slave device responds to requests from master
• Slaves are identified using a 7 bit address



EEL4930 – Microprocessor Applications II66

Inter-Integrated Circuit Bus



EEL4930 – Microprocessor Applications II67

Inter-Integrated Circuit Bus

• Transmission is started by master asserting start condition

• Send 7 bit slave address and r/~w bit

• Slave sends ACK driving SDA low

• Communication is established, data communicated depends on device
• Receiving endpoint must always send an ACK after 8 bits.

• Stop condition always generated by master



EEL4930 – Microprocessor Applications II68

The TI LP3943 LED Driver
• Independently control 16 LEDs

• I2C interface to MCU
• Continuous write allowed by setting bit 4 of register address to 1.

• Two Internal PWM controls



EEL4930 – Microprocessor Applications II69

The TI LP3943 LED Driver
• LED control on LSn registers B1 B0 Configuration

0 0 Output is high impedance (LED is off)

0 1 Output set to ON state

1 0 Use PWM0/PSC0 for waveform

1 1 Use PWM1/PSC1 for waveform

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

B1 B0 B1 B0 B1 B0 B1 B0

LED3 LED2 LED1 LED0

The LS0 Register (address 0x06)

• Duty Cycle control in PWMn
7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0

The PWM0 Register (address 0x03)

• Frequency control in PSCn
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

The PSC0 Register (address 0x02)

LED output modes



EEL4930 – Microprocessor Applications II70

The TI LP3943 LED Driver
• PWMn and PSCn registers are integer registers

• No floating point values allowed. Round to nearest.

• Driver can do 8 bit PWM, only 256 steps available
• Increment in steps of 1/256

• Waveform period can range from 0.625 ms to 1.6 s
• Compute the PSCn value for period T using 𝑇 = (𝑃𝑆𝐶𝑛 + 1)/160



EEL4930 – Microprocessor Applications II71

The TI LP3943 LED Driver
• LEDs 0 to 7,1 Hz, 25%

• LEDs 8 to 12, 5 Hz, 25%

• LEDs 13 to 15 off

7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 0 LS0 (0x06)

LED3 LED2 LED1 LED0

7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 0 LS1 (0x07)

LED7 LED6 LED5 LED4

7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 LS2 (0x08)

LED11 LED10 LED9 LED8

7 6 5 4 3 2 1 0

LS3 (0x09)0 0 0 0 0 0 1 1

LED15 LED14 LED13 LED12

7 6 5 4 3 2 1 0
PSC0 (0x02)

1 0 0 1 1 1 1 1

7 6 5 4 3 2 1 0
PWM0 (0x03)

0 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0
PSC1 (0x04)

0 0 0 1 1 1 1 1

7 6 5 4 3 2 1 0
PWM1 (0x05)

1 0 0 0 0 0 0 0



The ARMv7-M Architecture
EXCEPTION MODEL, NVIC, SYSTICK, & PENDSV

EEL4930 – Microprocessor Applications II72



EEL4930 – Microprocessor Applications II73

Exception Model
• Exception == Interrupt

• Different in the M profile

• Hardware saves and restores key states on exception entry and exit

• Vectored exceptions
• Each exception has its own unique vector

• Interrupts can be nested
• Higher priority interrupts can preempt the servicing of lower priority interrupts

• Lower priority interrupts must wait for higher priority interrupts to be serviced

• Nest too deep and you will find yourself with a Stack Overflow



EEL4930 – Microprocessor Applications II74

The Interrupt Vector Table
• Initial table located at 

0x00000000

• Can be relocated to any other 
address
• VTOR: Vector Table Offset Register, 

initially 0

• Can only be done by privileged 
software

• 16 core interrupts, up to 240 
external vectors

16+N 64+4*N External Interrupt N

15 0x0000003c SysTick

14 0x00000038 PendSV

13 0x00000034 Reserved

12 0x00000030 DebugMonitor

11 0x0000002c SVCall

10 0x00000028

Reserved
9 0x00000024

8 0x00000020

7 0x0000001c

6 0x00000018 UsageFault

5 0x00000014 BusFault

4 0x00000010 MemManage (MPU exception)

3 0x0000000c HardFault

2 0x00000008 NMI (Non-Maskable Interrupt)

1 0x00000004 Reset

0 0x00000000 Initial Stack Pointer



EEL4930 – Microprocessor Applications II75

The Cortex-M4 Startup
• CPU enters handler mode

• CPU reads address 0x00000000, stores value in msp

• CPU reads address 0x00000004, stores value in pc

• CPU leaves handler mode, enters thread mode

• CPU starts instruction fetches from pc



EEL4930 – Microprocessor Applications II76

Servicing Exceptions
• CPU finishes executing current instruction

• If instruction is of interruptible-continuable kind, state is saved in epsr.ici and 
instruction is interrupted

• If instruction is of interruptible-continuable kind and inside an it block, instruction state 
is discarded and instruction is interrupted

• CPU enters handler mode

• CPU saves current execution state into stack

• Exception number is stored in ipsr

• CPU reads address VTOR + 4*ipsr

• Register lr is loaded with a EXC_RETURN

• CPU stores read value in pc, resumes execution from new pc



EEL4930 – Microprocessor Applications II77

Saved Context

Element Description

xPSR Processor status register at time of exception

ReturnAddress Next pc at time of exception. Current pc if instruction is interruptible and was 
interrupted.

lr Procedure link register (r14)

r12 Intra-procedure-call scratch register

r3 Argument register 4/scratch register 4

r2 Argument register 3/scratch register 3

r1 Argument register 2/scratch register 2

r0 Argument register 1/scratch register 1

• Context saved into stack
• Stack pointer used depends on CPU mode at time of exception

• Resulting stack pointer always aligned to a double word



EEL4930 – Microprocessor Applications II78

Exception Returns
• Exception returns occur when a the CPU is in handler mode and a 

EXC_RETURN value is loaded into pc

• CPU restores context from stack and resumes execution from 
ReturnAddress

• CPU may remain in handler mode after an exception return
• e.g. nested interrupts



EEL4930 – Microprocessor Applications II79

The EXC_RETURN values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F M S 0 1

Bit Description

F If 0, floating-point context is present and to be loaded
If 1, floating-point context may be present but not to be loaded

M If 0, return from exception and resume execution in Handler mode
If 1, return from exception and resume execution in Thread mode

S If 0, load saved context from msp, resume execution using msp as sp
If 1, load saved context from psp, resume execution using psp as sp

• Loading an EXC_RETURN value from outside handler mode into pc
will cause an instruction fetch from that location
• Location is NX (No-eXecute), CPU will raise exception



EEL4930 – Microprocessor Applications II80

Exception Priority
• Exception priority is configurable (for the most part)

• Reset, NMI, and HardFault have fixed priority

• Higher priority exception will preempt lower priority exceptions

• Highest configurable priority value is 0 Exception Priority

Reset -3

NMI -2

HardFault -1

MemManage 0

BusFault 0

UsageFault 0

… 0



EEL4930 – Microprocessor Applications II81

Exception Priority
• Configuring Priority

• System Handler Priority Registers (SHPRx) for core exceptions with 
configurable priority

• Interrupt Priority Registers (NVIC_IPRx) for external interrupt sources

• Registers divided into four 8 bit fields which hold priority for exception



EEL4930 – Microprocessor Applications II82

System Handler Priority Registers
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

SHPR1 Reserved PRI_6 PRI_5 PRI_4

SHPR2 PRI_11 Reserved

SHPR3 PRI_15 PRI_14 Reserved

Field Description

PRI_4 Priority of system handler 4, MemManage

PRI_5 Priority of system handler 5, BusFault

PRI_6 Priority of system handler 6, UsageFault

PRI_11 Priority of system handler 11, SVCall

PRI_14 Priority of system handler 14, PendSV

PRI_15 Priority of system handler 15, SysTick



EEL4930 – Microprocessor Applications II83

Interrupt Priority Registers
• Vendor specific configuration

• Vendor defined allowed priority values

• Check your microcontroller datasheet for details



EEL4930 – Microprocessor Applications II84

MSP432 Interrupt Priority Registers
• TI defines 3 bit priority

• Only highest three bits of the octet are used

• Lower five bits are reserved (RAZ/WI)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 Reserved 0 Reserved

RW RAZ/WI RW RAZ/WI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Reserved 0 Reserved

RW RAZ/WI RW RAZ/WI

If configuring registers directly in C or assembly, allowable priority values 
are 0x00, 0x20, 0x40, 0x60 , 0x80 , 0xa0 , 0xc0 , 0xe0



EEL4930 – Microprocessor Applications II85

MSP432 Interrupt Priority Registers
• Setting Interrupt Priority with CMSIS-Core

• Use IRQ_SetPriority(number, priority)

• number: Interrupt number

• priority: Interrupt priority
• Valid values are 0, 1, 2, 3, 4, 5, 6, 7

• IRQ_SetPriority()will shift these values automatically



EEL4930 – Microprocessor Applications II86

Service Requests
• Issued by application software to request actions from privileged 

software

• Useful when implementing an operating system
• Keep direct hardware access from software

• Allow OS to mediate access between software and hardware

• OS in charge of distributing resources



EEL4930 – Microprocessor Applications II87

Service Requests
• Execute the svc instruction

svc<c> #<imm>

• Hardware does not check imm field

• Value is a hint to supervisor software to take an action

c Optional condition code

imm Optional 8 bit immediate



EEL4930 – Microprocessor Applications II88

The SVCall Handler
• Executed when CPU encounters a svc instruction

• Passing arguments to SVCall is ABI dependent
• Your system’s design, your choice

• Recommendation
• use imm for service number

• pass four arguments in r0—r3



EEL4930 – Microprocessor Applications II89

The SVCall Handler
Example assumptions:

• Functions sys_write(), sys_read(), sys_open(), and 
sys_close() are defined

• Privilege separation is enabled, process uses psp, system uses msp

• FPU not used



EEL4930 – Microprocessor Applications II90

The SVCall Handler
svcall_vect:

push {r4, r5, r6, lr} /* push temporary registers and link register */

mrs r4, psp /* get process stack pointer */

ldr r5, [r4, #24] /* get program counter after svc instruction */

ldrh r5, [r5, #-2] /* load svc instruction (halfword, two bytes) */

and r5, r5, #0xff /* extract imm from svc instruction */

lsl r5, #2 /* make it into a word */

ldr r6, syscall_table_size /* load the size of the service call table */

cmp r5, r6 /* ensure we are within bounds */

ittet lt /* if so, then */

ldrlt r6, =syscall_table /* load pointer to service call table and */

ldrlt r6, [r5, r6] /* get address of handler function */

movge r0, #-1 /* otherwise, move error into return */

blxlt r6 /* or dispatch handler */

str r0, [r4] /* store return value into process stack */

pop {r4, r5, r6, pc} /* restore temporary registers and return */

.align 4

syscall_table:

.word sys_write, sys_read, sys_open, sys_close

syscall_table_size:

.word . – syscall_table



EEL4930 – Microprocessor Applications II91

Wrapping the Service Call in C
/* C Library Implementation, write.c */

extern int errno;

extern ssize_t __write(int fildes, const void* buf, size_t count);

ssize_t write(int fildes, const void* buf, size_t count) {

size_t ret;

ret = __write(fildes, buf, count);

return ret < 0 ? -!!(errno = -ret) : ret;

}

/* Assembly wrapper, __write.S */

.globl __write

.type __write, %function

__write:

svc #0

bx lr



EEL4930 – Microprocessor Applications II92

Kernel-Side Operation
/* sys_write.c */

ssize_t sys_write(int fildes, const void* buf, size_t count) {

ssize_t (*write_fn)(const void*, size_t);

if(!fildes_valid_for_task(fildes)) {

return –EBADF;

}

if(!is_fildes_writable(fildes)) {

return –EINVAL;

}

if(!(write_fn = get_write_fn(fildes))) {

return –EBADF;

}

return write_fn(buf, count);

}



EEL4930 – Microprocessor Applications II93

System Timer
• The System Timer (SysTick) is a 24 bit decrementing counter

• Can be employed in different ways
• RTOS scheduler

• Track time

• Configured using the memory mapped SYST_* registers starting at 
address 0xe000e010

• Triggers the SysTick vector



EEL4930 – Microprocessor Applications II94

System Timer
Register Description

SYST_CSR SysTick Control and Status Register
• COUNTFLAG (bit 16): If set, timer has counted to zero since the last time this register was read. 

This bit is cleared on software reads to this register and writes to SYST_CVR.
• CLKSOURCE (bit 2): If set, SysTick uses the processor clock, otherwise SysTick uses an 

implementation defined external reference clock. If no external clock is implemented, this bit 
reads as 1 and ignores writes.

• TICKINT (bit 1): If set, a count to 0 changes the SysTick exception status to pending, triggering 
an interrupt request. Writing a 0 to SYST_CVR does not change the status of the SysTick
exception to pending.

• ENABLE (bit 0): If set, counter is enabled and counts down from SYST_RVR. Upon counter 
reaching 0, the value in SYST_RVR is reloaded into SYST_CVR.

SYST_RVR SysTick Reload Value Register. Holds the 24 bit reload value used by the SysTick counter. SysTick
counts down from this value.

SYST_CVR SysTick Current Value Register. Reads or clears the 24 bit current counter value. Any writes to this 
register clears it.



EEL4930 – Microprocessor Applications II95

System Timer
Register Description

SYST_CALIB SysTick Calibration Value Register. Contains calibration parameters for the SysTick
implementation.
• NOREF (bit 31): If set, indicates that the implementation defined reference clock is not 

implemented. If this bit is set, then the CLKSOURCE bit in SYST_CSR is forced to 1 and can 
not be cleared.

• SKEW (bit 30): If set, indicates that the stored 10 ms calibration value is inexact because of 
the clock frequency used.

• TENMS (bits 23 to 0): Holds a reload value to be used for 10 ms (100 Hz) subject to system 
clock skew errors. If the value stored is 0, the calibration value is unknown.



EEL4930 – Microprocessor Applications II96

System Timer
• Enabling the System Timer through CMSIS-Core

• Use the SysTick_Config() function

int ret = SysTick_Config(ticks_to_count);

if(!ret) {

/* handle error */

}



EEL4930 – Microprocessor Applications II97

System Timer
• Enabling SysTick from C without CMSIS
#define SYST_CSR (*((volatile unsigned int*)(0xe000e010)))

#define SYST_RVR (*((volatile unsigned int*)(0xe000e014)))

#define SYST_CALIB (*((volatile unsigned int*)(0xe000e01c)))

#define SYST_ENABLE (1 << 0)

#define SYST_TICKINT (1 << 1)

void systick_init(void) {

SYST_RVR = SYST_CALIB & ((1 << 24) – 1);

SYST_CSR = SYST_ENABLE | SYST_TICKINT;

}



EEL4930 – Microprocessor Applications II98

SysTick and Scheduling
• Trigger SysTick vector to initiate a context switch?

• Problems:
• Scheduler runs at lowest priority to avoid missing critical interrupts

• Set SysTick interrupt to lowest priority

• SysTick can be used for more than just scheduling

• We miss SysTick events

• Solution:
• Don't run the scheduler on SysTick vector

• Use SysTick vector to signal that the scheduler should be run



EEL4930 – Microprocessor Applications II99

Pendable Services
• ARMv7-M provides the Pendable Service interrupt for this purpose

• Scheduling, take 2:
• Configure PendSV to lowest priority

• Allow SysTick to trigger at normal priority

• Let SysTick set the PendSV flag

• Allow PendSV to run at its own time

• No critical interrupts missed!

• PendSV is configured through the ICSR register



EEL4930 – Microprocessor Applications II100

Requesting PendSV
/* 100 SysTick interrupts per CPU quantum */

#define TICKS_PER_QUANTUM 100

#define ICSR (*((volatile unsigned int*)(0xe000ed04)))

#define ICSR_PENDSVSET (1 << 28)

static volatile unsigned int ticks_count;

void systick_handler(void) {

ticks_count++;

if(ticks_count == TICKS_PER_QUANTUM) {

/* time for the scheduler to run! */

ticks_count = 0;

ICSR |= ICSR_PENDSVSET;

}

/* handle other SysTick related events */

}



EEL4930 – Microprocessor Applications II101

PendSV Interrupt and Scheduling
• The job of the scheduler

• Save the execution context of the current running task

• Pick a new runnable task, this is the newly scheduled task

• Restore the context of the newly scheduled task

• Resume execution of the newly scheduled task

• The way tasks are handled by the operating system depends on the 
implementation

• Commonly, this is done using a Process Control Block (PCB) or Task 
Control Block (TCB) to store task information

• At least a portion of the scheduler must be written in assembly



EEL4930 – Microprocessor Applications II102

PendSV Interrupt and Scheduling
Example assumptions:

• Kernel keeps a current pointer for the current task

• The schedule() function takes the current process's stack pointer 
and returns the newly scheduled task's stack pointer
void* schedule(void* sp);

• Context switches will occur only from non-privilege to privilege mode

• Applications use their own process stack (psp)

• FPU is not used

• Registers are saved in the process's stack



EEL4930 – Microprocessor Applications II103

PendSV Interrupt and Scheduling
.globl pendsv_vect

.type pendsv_vect, %function

.align 4

pendsv_vect:

push {lr}

mrs r0, psp

stmdb r0!, {r4-r11}

msr psp, r0

bl schedule

ldmia r0!, {r4-r11}

msr psp, r0

pop {pc}


