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Brief History of C

 Designed at AT&T Bell Laboratories by Dennis
Ritchie in 1972

 Development closely related to UNIX

 Multiplatform
 Language is simple to translate into assembly
 Only 42 keywords in the core language

Dennis M. Ritchie
09/09/1941—10/12/2011
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C Standards

e K&RC
 Defacto standard for years THE
 Described in the book "The C
Programming Language" (K&R)
 Not widely supported by modern
compilers
e (89 PROGRAMMING
. ANSIC LANGUAGE
* Introduces the Standard C Library
o M|Crosoft S Stuck here W|th VS Brian W. Kernighan ¢ Dennis M. Ritchie
e C99 e

 Additions to the language
* Deprecation of gets ()
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C Standards

e (11
* Latest standard
* Introduction of atomic operations
* Threading support
* Removal of gets ()

#include <stdio.h>
#include <stdlib.h>

int main (void) {

fprintf (stdout, "hello, world\n");
return EXIT SUCCESS;

4  EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

C and C++

e C++is not an extension of the C language

e C++is not C with classes

e C++isits own language

/* this is valid C, but invalid C++ */
int* allocate int array(size_ t n) {
return malloc(n * sizeof (int));
}
/* this is valid C++, but invalid C */
int* allocate int array(size t n) {
return reinterpret cast<int*>(malloc(n * sizeof (int)));

}
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Working With C — Toolchain Workflow

 C Preprocessor runs in source file, handles directives
#include <inttypes.h>
#ifndef int32 t
fwarning Needed type is not defined, falling back to least size.
#define int32 t int32 least t
fendif

e C Compiler runs over the output of the C Preprocessor, converts C
source into assembly listing

 Assembler runs over C Compiler output, generates object files

* Linker runs over the object files and creates a machine-dependent
executable
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Working With C — Behavior

* Behavior: external appearance or action

 The action of integer addition has behavior which corresponds to arithmetic
addition (with a few exceptions)

 The operation of control-flow keywords

* Undefined Behavior: behavior, upon use of a nonportable or erroneous
program construct or of erroneous data, for which there are no
requirements
 Dereferencing an invalid pointer
 Overflow in signed integer arithmetic
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Working With C — Behavior

 Implementation Defined Behavior: Specified behavior where each
implementation documents how the choice is made
* The placement of members on a bitfield
 The addition of padding between types during allocation

* Unspecified Behavior: Use of an unspecified value, or other behavior
where the standard provides two or more possibilities and imposes no
further requirements on which is chosen in any instance
* Order of evaluation of subexpressions in an expression

a=*f() + g(); /* no specification on whether f() or g() is
* evaluated first */
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Working With C — Behavior

* locale-specific behavior: Behavior that depends on local conventions
of nationality, culture, and language that each implementation
documents
e Using a comma as a decimal separator instead of a period
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Working With C — Data Types

bytes (bits)
Data Type
Required x86 x86_64 MSP430 AVR ARM SPARCv8
short 2 (16) 2 (16) 2 (16) 2 (16) 2 (16) 2 (16) 2 (16)
int 2 (16) 4 (32) 4 (32) 2 (16) 4 (32) 4 (32) 4 (32)
long 4 (32) 4 (32) 8 (64) 4 (32) 4 (32) 4 (32) 4 (32)
long long 8 (64) 8 (64) 8 (64) 8 (64) 8 (64) 8 (64) 8 (64)

* The char type is a special integer
* Always 8 bits
* Promoted to full integer under most operations
* char,signed char,unsigned char are all different data types
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Working With C — Data Types

(99 required fixed width integer types

e Minimum width integers

int leastN t,uint leastN t

Mandated for N € {8,16,32,64}, other N optional
Underlying container may be wider than N

* Fastest type integer

int fastN t,uint fastN t

. Mandated for N € {8,16,32,64}, other N optional
Underlying container may be wider than N

(99 optional integers, not required to exist in the implementation

* Fixed width integers
* intN t,uinth t
. Underlying container is exactly N bits wide
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Working With C — Aggregate Types

* Combine primitive and other types into more complex types

e structs
°* unions
e Dbitfields

* Elements within an aggregate are called members

* Aggregates define necessary storage capacity

e Compiler must know size to perform allocation

struct aggregate;

struct aggregate ag;

ag.member = 10; /* error: accessing member of incomplete type */

struct aggregate* agp = malloc(sizeof(*agp)) /* error: allocating
* incomplete type */
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Working With C — Aggregate Types

e A struct isan aggregate whose storage capacity is at least that of the
elements it contains

e Compiler may add padding between members of the struct to preserve or add
alignment

* Aunionissimilartoa struct, however all members of a union occupy
the same location in memory (overlap)

* Itis undefined behavior to assign to a member of a union and then read from another
one

union u f{
int 1i;
float £;

b

union u a;

a.f = 3.1415%;

printf ("%d\n", a.i); /* undefined behavior: assigned to a.f but
* reading from a.i */
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Working with C — Aggregate Types

* A bitfield has no associated typename

e Members of a union or struct may be declared to consist of a specified
number of bits

struct packed data {

char a : 4,
char b 23
char c 23

I
e Compileris free to change member order
e Compileris free to add padding between members
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Working with C — Storage Classes

* static
 Associated variable has permanent store

* auto
 Associated variable has temporary store
 Default for local variables

register

 \Variable is to be register bound at all times
* Implies auto

e Canbeignored by modern compilers

_Thread local
e Variable store is local to thread
* Allocated when thread starts, deallocated when thread ends

e exXxtern

 Variable store is staticor Thread local butno space is allocated for the variable in the
current context o o

 Backing store for the variable is provided by a different compilation unit
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Working With C — Type Qualifiers

* const
 (Qualified type is read only

 Attempts to modify an object defined with a const-qualified type through an
lvalue with non-const-qualified type results in undefined behavior

const char* msg = "hello, world";
char* p = (char*)&msg[3]; /* discard const qualifier */
*p = 'L'; /* undefined behavior */
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Working With C — Type Qualifiers

* volatile
 Accessing object with qualified type has side effects
 What constitutes as a side effect is implementation defined

 Attempts made to refer to an object defined with a volatile-qualified type
through use of an 1value with non-volatile-qualified type results in
undefined behavior

volatile int 1i;
int* p = (int~*) &i; /* discard volatile qualifier */
*p = 10; /* undefined behavior */

for (volatile int j = 0; 7 < 10; j++) {
/* This loop has implementation defined behavior.
* Different compilers may generate different outputs.
* Do not use this as a delay loop. */

}
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Working with C— Type Qualifiers

* restrict
 [Introduced in C99
 Formal definition in ISO/IEC 9899:2011 Section 6.7.3.1

 Pointers declared with this qualifier are guaranteed not to alias (point to same
location in memory)

 Guarantee is given by programmer
* Hints a compiler to generate more efficient code
* |f pointers do alias, resulting code has undefined behavior

* Atomic
e |ntroducedin C11

* Operations on objects whose type have been qualified as Atomic are
guaranteed to complete in a manner that appears instantaneous to the rest of
the system
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Working With C— Other Notes

* Integer variables with permanent store that have not been explicitly
initialized are automatically initialized to 0 by the runtime
* |nan embedded system, the linked-in runtime is responsible for this action

* Pointer variables with permanent store that have not been explicitly
initialized are automatically initialized to NULL by the runtime
* |n an embedded system, the linked-in runtime is responsible for this action

* Local variables that have not been explicitly initialized have undefined
contents
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C Data Structures

e Alinked list is a data structure that allows for theoretical infinite
expansion

* |tis often created as an aggregate, containing
* asection for the data
* a pointer to the next node on the list, and
 optionally, a pointer to the previous node on the list

* Nodes on a linked list are often created dynamically
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struct double linked list node {

void* data; /* pointer to the data */

struct linked list node* next; /* next node */
struct linked list node* previous; /* previous node */

s

4_
data [*
_> <_
next data
: next
previous L* -
data — L—-previous
next data —>
previous next
previous
o
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Linked Lists

* Traversalin O(n)

* Insertionin O(1), provided insertion at head

* Deletionin O(n), need to traverse list to find element
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Linked Lists

/* allocate node with data, data must be previously allocated */
struct double linked list node* allocate node(void* data) {
struct double linked list node* t;
t = (struct double linked list node*)malloc (sizeof (*t));
if(!'t) {
return (struct double linked list node*)NULL;

J
t->next = (struct double linked list node*)NULL;

t->previous = (struct double linked list node*)NULL;
t->data = data;
return t;
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Linked Lists

/* insert data at start */
struct double linked list node* insert node (
struct double linked list node* head,
void* data) {
struct double linked list node* t;
if (!head) {
return allocate node (data);

}

t = allocate node (data);

/* should really check for allocation failure */
t->next = head;

head->previous = t;

return t;
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Linked Lists

/* search list for data */

struct double linked list node* search list(
struct double linked list node* head,
const void* data) {

struct double linked list node* t;
/ * compare data () returns 0 on match */
for (t = head; t && compare data(t->data, data); t = t->next)

}

return t;
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Linked Lists

/* delete first found element from list using data */
struct double linked list node* delete data(
struct double linked list node* head,
const void* data) {

struct double linked list node* t;
if (!'head) {
/* empty list */
return (struct double linked list node*)NULL;
}
if(! (t = search list(head, data)) {
/* no element to delete */
return head;

}

/* continues.. */
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Linked Lists

i1f (t->next) {
/* if not at the tail, bridge over next element */

t->next->prev = t->prev;

}

if (t->prev) {
/* if we are not the head of the list, tie the previous

* node to the next
*/
t->prev->next = t->next;

} else {
/* we are the head of the list, new head needed */

head = t->next;

}
free(t);
/* return the possibly new head */

return head;

}
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Real-Time Systems
and Scheduling

THEORY, & ALGORITHMS
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Real-Time Systems

* Correctness of the system depends on
* logical results of computation
e Time at which the results are produced

 Tasks need to complete before a deadline
e System is at fault otherwise
 Task not completing before deadline is a scheduling failure

 To guarantee the timing behavior, system must be predictable

* When a task is activated, it should be possible to determine its completion time
with certainty

 Upper bound suffices for most cases
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Real-Time Systems

A system is real-time if for a set of tasks T = {14, T, T3, ..., T,,} Where the
worst case execution time for task t; € T is C; if there exists at least one
task T, with a deadline D, so that one of the following conditions is met:

* 1.is completed before its deadline, that is C. < D.. In this case, the
system is called hard real-time.

* 1T.is completed sometime after its deadline, thatis C. < D.. A penalty,
P(t,), is paid if the scheduling constrain is not met. In this case, the
system is called soft real-time.

* T, is completed before its deadline, that is C. < D.. A reward function
R(z.) is defined so that if the task is completed after its deadline it
becomes 0. Otherwise the reward is a positive function.
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Tasks in Real-Time Systems

Tasks in real-time systems can be:

* Periodic
e Become ready regularly at a fixed rate
e Usually constrained to execute within one period P
e DeadlineisP

* Aperiodic
* Activate irregularly at some unknown, possibly unbound rate
* Constrained by deadline D

 Sporadic
e Activated irregularly, with some known bound rate
 Characterized by a minimum interval between activations
 Constrained by a deadline D
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Tasks in Real-Time Systems

Tasks can also be

 Preempted if they can be interrupted when a task with equal or higher
priority becomes ready

e So far, our scheduler preempts all (user) tasks

 non-preemptive if they should be completed without interruption

Task priority can be
e Static if they are assigned and never changed

* Dynamic if priority can change as the system runs
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Tasks in Real-Time Systems

Tasks can also be

* Independent if they can be executed without regards to other tasks

 Dependent if executing a task is dependent on a certain resource or
condition becoming available
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The Job of the Scheduler

The act of deciding which runnable task is to be executed is called
scheduling. Formally,

Given a set of tasks T = {14, T, ..., Tp,},  Set Of processors T =

{m, 5, ..., M}, and a set of resources R = {R{, R,, ..., R} }, scheduling
refers to the act of assigning tasks from T to processors from  and
resources from R so that all tasks complete under certain imposed
constraints.
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Schedulers

e Non-real-time
e Round Robin scheduler

e Real-time
e Rate Monotonic scheduler
e Deadline Monotonic scheduler
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Round Robin Scheduling

Given a set of tasks T = {14, 75, ... T,,}, each task t; is given equal CPU
time without regards for priority.

e Startat 74 and allow it to run for P, then
* Switch to 7, and allow it to run for P, then
* Switch to 7,, and allow it to run for P, then

* Switch to 7; and allow it to run for P, then...
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

37 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T=0: {74, 73}

| T4, T3 arrive, scheduler picks 74 (3 is a valid option)
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T =5: {74, 73}

T, preempted, scheduler runs 75
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T=8: {14,173, 75}

B

T, arrives, CPU quantum for 75 not expired

40 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T=10: {1, 73,7, }

t T3 preempted, scheduler picks 7,

41 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T =15: {14, 73, 7,}

T, preempted, scheduler picks 74
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T = 20: {14, 73, 7,}

T, preempted, scheduler picks 73
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T = 25: {14,713, 7,}

T3 preempted, scheduler picks 7, 1
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T =30: {74, 73}

T3 finishes, scheduler picks 74 |
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T = 35: {74, 73}

7, preemted, scheduler picks 73 f
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T =40: {74}

T4 finishes, scheduler picks 74 I
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T =45: {74}

| T1 quantum expired, nothing new in the run queue, get 74
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T=48: {74, 7,}

| T, arrives, CPU quantum for 7; not expired
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T=50: {74, 7,}

| T, preempted, 7, scheduled
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T =55: {74, 7,}

t T, preempted, 7, scheduled
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T=60: {1,}

60 62 64 66 68 70 72 74 76 78

t T4 finishes, 7, scheduled

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T=65: @

Ty A 66 68 70 72 74 76 78

t T, finishes, nothing to schedule

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue atT=70: @

Ty RGeS /0 /2 74 76 78

| nothing to schedule

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T =80: {74}

-~ [(idle, wasted cycles)

80 82 8 86 838 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
| T4 arrives, schedule it
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T =88: {74, 7,}

-~ (idle, wasteo

76 78

~1
(D

T T 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

. T, arrives, CPU quantum for 74 not expired
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T=90: {74, 7,}

-~ (idle, wasteo

76 78

~1
(D

T T 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

| T, preempted, 7, scheduled
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T=95: {74, 7,}

-~ (idle, wasteo

76 78

~1
(D

T T Ty 4 96 98 100 102 104 106 108 110 112 114 116 118

t T, preempted, 7; scheduled
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Round Robin Schedu\ing
m One CPU Quantum:

30

5 ticks
T, 40 8 10
Ts 100 0 15

Run Queue at T =100: {74, 75, T3}

-~ (idle, wasteo

76 78

~1
(D

T T Ty T 100 102 104 106 108 110 112 114 116 118

t T arrives, T, preempted, 7, scheduled (75 is valid too)
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CPU Efficiency

* |dle cycles are wasted cycles, the CPU could be doing something at this
point, but it is doing nothing

* Measure CPU usage

C;
P;

M:

-
[
p—

* (;isthe execution time of the task (burst length) t;
* P;isthe period of task t;
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CPU Usage
Tk | period | Amial | Burst Length_
T4 80 0 30

T, 40 8 10
T3 100 0 15

U—30+10+ 15
80 40 100

= 77.5%
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CPU Usage
Tk | period | Amial | Burst Length_
T4 80 0 30

T, 40 8 10
T3 100 0 15

U—30+10+ 15
80 40 100

= 77.5%

CPU is idle 22.5% of the time. We want CPU utilization
to be as close to 100% as possible.
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Round Robin Scheduling

Given:

circular list of tasks task list
size of task list N

number of scheduling ticks t
schedule:

current < task_list[t]
t< (t+1) mod N
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Context Switching

e Context Switching refers to the act of storing the active execution
context (CPU state) and restoring a new context

 Scheduler swaps tasks to time-share the CPU

* Scheduler must context switch between tasks
* Save all current task’s registers
* Save current apsr
 Restore next task’s apsr
 Restore next task’s registers

 Use PendSV to initiate the process
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Context Switching

* Recall that on entering handler mode CPU saves 11, pc, xPSR, r0 —
r3,rl2

 Software responsible for saving r4d—r11

* Before exiting handler mode
 Software restores new r4—rl1
* CPUrestoresnew 1r, pc, xPSR, rO—r3,rl2
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Use PendSV to call schedule!

.globl pendsv vect

.type pendsv vect, Sfunction
.align 4
pendsv vect:
push {1r}
mrs r0, psp
stmdb r0!, {rd-rll}
msr psp, r0
bl schedule
ldmia r0!, {rd-rll}

msr psp, r0

pop {pc}
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Use SysTick to request PendSV

/* 100 SysTick interrupts per CPU quantum */
#define TICKS PER QUANTUM 100

fdefine ICSR (*((volatile unsigned int*) (0xe000ed04)))
#define ICSR PENDSVSET (1 << 28)

static volatile unsigned int ticks count;

void systick handler (void) ({
ticks count++;

if (ticks count == TICKS PER QUANTUM) {
/* time for the scheduler to run! */
ticks count = 0;
ICSR |= ICSR PENDSVSET;

}
/* handle other SysTick related events */
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Basic Semaphores

SEMAPHORES, SPIN-LOCKS
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Semaphores

 Count the number of resources available on system

* Block access to resource if the resource has been exhausted
e System may have maximum number of files that can be opened at a time
e Attempt to open a new file may block until a handler becomes available for use
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Semaphores

 Semaphores are equipped with two operations
 V:increments (verhogen)
 P:decrement (Dijkstra: prolaag, short for prober te verlagen, try to reduce)

 Semaphore operations must be atomic in nature

* The value of the semaphore is the number of units that are available
P operation wastes time until a resource becomes available
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operation V(semaphore S):
S&S+1

operation P(semaphore S):
atomic repeat:
if S>1then{S < S—-1; break}
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Semaphores

* Producer-consumer problem
 One process (producer) generates data
* One process (consumer) receives data
e Communication is achieved using a queue of size N

* Rules of communication
 Consumer must wait for the producer if queue is empty
* Producer must wait for consumer if queue is full
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Semaphores

* Track the state of the queue using two semaphores
* empty count:number of empty places in queue
* full count:number of elementsin queue

 Use binary semaphore (mutex) to ensure queue integrity
* use Jgueue
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producer: consumer:

Plempty count) P(full count)

P(use queue) P(use queue)

add_to queue(item) item €< get_from_queue()

V(use queue) V(use queue)

V(full count) V(empty count)

* empty count isinitialized to the number of slots in the queue
* full countisinitially 0
* use gueue isinitially 1
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Trivial Solution

* Ensure that producer/consumer can not be interrupted in critical
section
 Disable interrupts at start of critical section
 Enable them at end of critical section
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Trivial Solution

/* int start critical section(void) */ /* void end critical section(int) */

start critical section: end critical section:
mrs r0, primask msr primask, rO0
cpsid 1 bx 1r
bx 1r

/* program code */

int t;

t = start critical section();
/* critical section */

end critical section(t);
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Ilssues

* We are disabling interrupts
 (Can miss interrupt timings and thus miss events

* Themsr and mrs instructions are privileged
e Canonlyrunifthe CPU is in privileged mode
* In non-privileged mode, a fault will be generated

 (Can try moving stuff to a service call, but we disable interrupts... How do we get
back into the kernel after we exit it with interrupts disabled?

* This only works in uniprocessor systems
* In a multiprocessor system, we only disable interrupts in one core
 Scheduled task in second core can run its critical section

 (Can try disabling interrupts in all cores, but then we need to ensure mutual
exclusion of tasks in the scheduler

/7 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Semaphores in Thumb?2

* Implementing semaphores:
e ldrex{cond} rt, [rn {,#offset}]

load register exclusive

if the physical address has the Shared TLB attribute, the instruction tags the physical address as excusive
access for the current processor and clears other exclusive access tag for any other physical address

otherwise, it tags that the executing processor has an outstanding tagged physical address
e strex{cond} rd, rt, [rn {, #offset}]

. store register exclusive
. performs a conditional store to memory

. if the physical address does not have the Shared TLB attribute, and the executing processor has an
OL(thstan ing tagged physical address, the store takes place, the tag is cleared, and the value O is returned in
r

. if the physical address does not have the Shared TLB attribute, and the executing processor does not have an
outstanding physical address, the store does not take place, and the value 1 is returned in rd

. if the physical address has the Shared TLB attribute, and the physical address is tagged as exclusive access for

the executing processor, the store takes place, the tag is cleared, and the value O is returned in rd

. if the physical address has the shared TLB attribute, and the physical address is not tagged as exclusive
access for the executing processor, the store does not take place and the value 1 is returned in rd
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Semaphores in Thumb?2

/* spinlock wait loop*/
ldr r2, =lock address
mov rl, #1

1: ldrex r0, [r2] /* get value of lock, place tag on it */
cmp r0, #0 /* check if zero */
bne 1Db /* 1f not zero, someone else has lock */
strex r0, rl, [r2] /* try to store lock on it, 1f we lost

* the tag because someone else read
* from 1t, the store will fail

*/
cmp r0, #0 /* check if the store succeeded */
bne 1Db /* if not, we try again */

/* we now have the lock, access critical resource */
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More on Scheduling

REAL-TIME SCHEDULERS, PERIODIC EVENTS
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Rate Monotonic Scheduling

* Real time priority scheduler

 The task with the shortest period is scheduled first

e Task is run until it finishes

* Running task is preempted by one with higher priority
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T=0: {14, T,, T3}

| T1,To, T3 arrive, T, has shortest period thus is scheduled
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T=10: {74, 73}

t T, finishes, T, has shortest period thus is scheduled
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T=10: {74, 73}

t T, finishes, T, has shortest period thus is scheduled
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 35: {13}

(%) T1

74 finishes, 73 remains and is scheduled 1
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T =35: {1,}

T2

t T3 finishes, 7, arrives
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T=60: @

T2

t T, finishes

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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T1 80 0 25
To 50 0 10
T3 100 0 15
Run Queue at T =80: {74}

(%)
76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

t T, arrives

89 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Round Robin Scheduling
T | perod | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T =100: {74, 75, T3}

(%) T1

-~ (idle, wasted cycles)

TZ,T3 arrive, T, has shorter period, preempt 74
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T4 80 0 25

Ty 50 0 10

T3 100 0 15

Run Queue at T =110: {74, 73}

¥
76 78

110 112 114 116 118

T, finishes, 7, has shorter period, resume 14 1
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T4 80 0 25
Ty 50 0 10
T3 100 0 15
Run Queue at T = 115: {73}

¥
76 78
4 116 118

74 finishes, schedule 15
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CPU Usage
Tk | period | Amial | Burst Length_
T4 80 0 25

T, 50 0 10
T3 100 0 15

U—25+1O+ 5—66250/
—80 50 ' 100 07

CPU is idle 33.75% of the time.

93 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T=0: {14, T,, T3}

| T1,To, T3 arrive, T, has shortest period thus is scheduled
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 25: {74, 73}

| T, finishes, 7, scheduled

96 EEL4930 — Microprocessor Applications |l



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T =45: {13}

4 46 48 50 52 54 56 58 60 62 64 66 68 /0 72 74 76 78

| T4 finishes, 73 scheduled

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T =45: {13}

4 46 48 50 52 54 56 58 60 62 64 66 68 /0 72 74 76 78

| T4 finishes, 73 scheduled

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T=50: {73, 7,}

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

| T, arrives, has shorter period, 73 preempted

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 75: {13}

4 76 78

T, finishes, T3 resumes t

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 80: {73, 74}

(%) T1

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

t T, arrives, has shorter period, 73 preempted

101 EEL4930 — Microprocessor Applications Il



Nelms Institute for
the Connected World
UNIVERSITY of FLORIDA

UF

Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T =80: {73, T,, T3}

t 74 finishes, 7,, T3 arrive, first run of T3 not finished!
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CPU Overcommitted?
Tk | Perod | Amval | burstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

U_20+25+15
80 50 100

= 90%
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CPU Overcommitted?
Tk | Perod | Amval | burstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

U_20+25+15
80 50 100

CPU is idle 10% of the time.

= 90%
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CPU Overcommitted?
Tk | Perod | Amval | burstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

U_zo+25+15
80 50 100

CPU is idle 10% of the time.
- Scheduler failed to meet deadlines.

= 90%
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Rate Monotonic Scheduling

 Rate monotonic scheduler may fail if CPU utilization exceeds a

threshold.
n
C; 1/
ZF" <n (2 n 1)
1=

Where n is the number of tasks [Liu & Layland, 1973].

e This condition is sufficient, but not necessary.
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Rate Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

U—20+25+ 15
80 50 100

= 90%

Checking the condition:
3% (273 -1) ~ 78% « U
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Rate Monotonic Scheduling

Consider a set of ntasks T = {74, 75, ..., T, } Wwhose execution periods and times, P and
C,are P ={P;,P,,...,B,} and C = {C4, C5, ..., C},}, respectively. Suppose that task t;
finishes executing at time t. Then, let

l
t
W;(t) = z Ci [F} =t —idletime
j=1 '/

40
Li(t) = lt
Lo, O

Task 7; can be feasibly scheduled using the rate monotonic algorithm if and only if
L;(t) < 1.Ifso, then 1y, 15, ..., T;_; are also feasibly schedulable.
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Rate Monotonic Scheduling

* Full schedulability test is solving the previous recurrent relation to
determine violations

 [Liu & Layland 1973] also proved that under the assumption that
* inan uniprocessor system we know the tasks periods and burst lengths and
 thatthese are deterministic,
 the tasks share no resources, and
e that context switches have no impact
rate monotonic scheduling is the best we can achieve.
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Deadline Monotonic Scheduling

 Also known as Earliest Deadline First scheduling

* Real-time priority scheduler

 Attempt to overcome shortcomings of rate monotonic
* Give priority to tasks that have earliest deadline
* Higher priority tasks always preempt lower priority tasks
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Deadline Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15
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Deadline Monotonic Scheduling
T | perod | Amival | BurstLength
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T=0: {14, T,, T3}

| T1, T, T3 arrive, T, earliest deadline so it is scheduled
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 25: {74, 73}

| T, finishes, 7, scheduled (deadline at 80)
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T =45: {13}

| 74 finishes, T3 scheduled (deadline at 100)

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T=50: {73, 7,}

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T=60: {1,}

62 64 66 68 70 72 74 76 /8

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T =80: {7,, 74}

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

| T, arrives (deadline at 160), T, remains (deadline at 100)
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 85: {74}

4 8 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
| T, finishes, T; scheduled (deadline at 160)
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Deadline Monotonic Scheduling
Tk | Perod | Amval | burstLength
74 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T =100: {74, 75, T3}

T2

102 104 106 108 110 112 114 116 118

t T,, T3 arrive (150, 200), 71 (160) preempted by 7,
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Deadline Monotonic Scheduling

Under this algorithm, if all tasks are periodic and have relative deadlines equal
to their periods, they can be feasibly scheduled if and only if
n
Ci
— <1
L P
i=1
There is no simple schedulability test corresponding to the case where the
relative deadlines do not equal the periods. In such case, we actually have to
develop a schedule using the deadline monotonic algorithm to see if all

deadlines are met over a given time interval.
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Implementing These Schedulers

Use a priority queue:
* For Rate Monotonic Scheduler, priority is given to the shortest task

 For Deadline Monotonic Scheduler, priority is given to the earliest
deadline

Recall that:
e Tasks must be periodic
* Tasks must declare how long they will run for

e Tasks must declare when their deadline is
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