
Improved Scheduling
YIELDING, BLOCKING, SLEEPING, IMPROVED SEMAPHORES,
DEADLOCKS

EEL4930 -- Microprocessor Applications II1

EEL4930 – Microprocessor Applications II2

Scheduler Recap
The act of deciding which runnable task is to be executed is called
scheduling. Formally,

Given a set of tasks 𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑛}, a set of processors 𝜋 =
𝜋1, 𝜋2, … , 𝜋𝑚 , and a set of resources 𝑅 = 𝑅1, 𝑅2, … , 𝑅𝑘 , scheduling

refers to the act of assigning tasks from 𝑇 to processors from 𝜋 and
resources from 𝑅 so that all tasks complete under certain imposed
constraints.

EEL4930 – Microprocessor Applications II3

Round Robin Scheduling
Given a set of tasks 𝑇 = 𝜏1, 𝜏2, … 𝜏𝑛 , each task 𝜏𝑖 is given equal CPU
time without regards for priority.

• Start at 𝜏1 and allow it to run for 𝑃, then

• Switch to 𝜏2 and allow it to run for 𝑃, then

• …

• Switch to 𝜏𝑛 and allow it to run for 𝑃, then

• Switch to 𝜏1 and allow it to run for 𝑃, then…

EEL4930 – Microprocessor Applications II4

Rate Monotonic Scheduling
• Real time priority scheduler

• The task with the shortest period is scheduled first

• Task is run until it finishes

• Running task is preempted by one with higher priority

EEL4930 – Microprocessor Applications II5

Deadline Monotonic Scheduling
• Also known as Earliest Deadline First scheduling

• Real-time priority scheduler

• Attempt to overcome shortcomings of rate monotonic
• Give priority to tasks that have earliest deadline

• Higher priority tasks always preempt lower priority tasks

EEL4930 -- Microprocessor Applications II6

Producer—Consumer problem
Consider two tasks that:

• Run simultaneously

• Share a common, fixed-size buffer as a queue

• Task 𝜏1 generates (produces) data and places it into the queue

• Task 𝜏2 retrieves (consumes) the data and does something with it

 Processes must be synchronized
• Using semaphores, for example

EEL4930 – Microprocessor Applications II7

Semaphore Solution
• Track the state of the queue using two semaphores

• empty_count: number of empty places in queue

• full_count: number of elements in queue

• Use binary semaphore (mutex) to ensure queue integrity
• use_queue

EEL4930 – Microprocessor Applications II8

Semaphore Solution
producer:

P(empty_count)

P(use_queue)

add_to_queue(item)

V(use_queue)

V(full_count)

consumer:

P(full_count)

P(use_queue)

item  get_from_queue()

V(use_queue)

V(empty_count)

• empty_count is initialized to the number of slots in the queue
• full_count is initially 0
• use_queue is initially 1

EEL4930 – Microprocessor Applications II9

Semaphore Implementation
/* spinlock wait loop*/

ldr r2, =lock_address

mov r1, #1

1: ldrex r0, [r2] /* get value of lock, place tag on it */

cmp r0, #0 /* check if zero */

bne 1b /* if not zero, someone else has lock */

strex r0, r1, [r2] /* try to store lock on it, if we lost

* the tag because someone else read

* from it, the store will fail

*/

cmp r0, #0 /* check if the store succeeded */

bne 1b /* if not, we try again */

/* we now have the lock, access critical resource */

EEL4930 – Microprocessor Applications II10

The Issue
/* spinlock wait loop*/

ldr r2, =lock_address

mov r1, #1

1: ldrex r0, [r2]

cmp r0, #0

bne 1b

strex r0, r1, [r2]

cmp r0, #0

bne 1b

/* got the lock */

• Task, 𝜏𝑖, is in a loop waiting for the
lock to be acquired

• Another task, 𝜏𝑘, is holding the
lock

• 𝜏𝑘 can not release the lock

• 𝜏𝑖 will not make any progress
during its quantum!
• 𝜏𝑖 has a chance to do any useful work

in at least two quantums

• CPU time is being wasted!

EEL4930 -- Microprocessor Applications II11

The Solution
• Yield the CPU to another task

• Better CPU utilization

• OS controls scheduling

• Task waiting on lock must notify OS that it wishes to relinquish CPU
• sched_yield()

EEL4930 – Microprocessor Applications II12

Better Semaphore Implementation
/* better wait loop*/

ldr r2, =lock_address

mov r1, #1

1: ldrex r0, [r2] /* get value of lock, place tag on it */

cmp r0, #0 /* check if zero */

blne sched_yield /* we don’t have the lock, yield CPU */

bne 1b /* retry to get lock */

strex r0, r1, [r2] /* try to store lock on it, if we lost

* the tag because someone else read

* from it, the store will fail

*/

cmp r0, #0 /* check if the store succeeded */

blne sched_yield /* we don’t have the lock, yield CPU */

bne 1b /* and try again */

/* we now have the lock, access critical resource */

EEL4930 -- Microprocessor Applications II13

Yielding the CPU
• Call sched_yield() from the task

• Kernel receives message

• Kernel saves current task’s context

• Kernel schedules a new task and switches in its context

• Kernel allows new task to execute

EEL4930 -- Microprocessor Applications II14

Going Into Kernel
• Need a service from the kernel

• svc: service call instruction

• Assume that service 5 is the yield service

/* Library function wrapper */

extern void __sched_yield(void);

void sched_yield(void) {

__sched_yield()

}

/* assembly implementation */

.globl __sched_yield

.type __sched_yield, %function

__sched_yield:

svc #5

bx lr

EEL4930 – Microprocessor Applications II15

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

EEL4930 – Microprocessor Applications II16

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1

EEL4930 – Microprocessor Applications II17

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2

𝜏2 yields, scheduler picks 𝜏1

EEL4930 – Microprocessor Applications II18

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1

Quantum yielded by 𝜏2 end, scheduler picks 𝜏2

EEL4930 – Microprocessor Applications II19

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏2

EEL4930 – Microprocessor Applications II20

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏2 𝜏1

EEL4930 – Microprocessor Applications II21

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏2 𝜏1 𝜏2

EEL4930 – Microprocessor Applications II22

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏2 𝜏1 𝜏2 𝜏1

EEL4930 – Microprocessor Applications II23

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏2 𝜏1 𝜏2 𝜏1

𝜏2

𝜏2

EEL4930 -- Microprocessor Applications II24

The Issue
• Task checking and waiting for lock is scheduled

• Yields CPU as soon as it realizes it can’t continue

• Task wastes CPU on check

• Scheduler wastes CPU in double context switch
• Task switches in just to yield

• Task switches out

• New task switches in

EEL4930 -- Microprocessor Applications II25

Solution
• Block task until lock/resource is free

• Task is flagged as TASK_BLOCKED

• Scheduler will not switch into TASK_BLOCKED tasks

• OS needs to know lock/resource task is waiting for
 Need to tell kernel what resource we are waiting on

 Lock holder needs to tell kernel that resource has been released

EEL4930 -- Microprocessor Applications II26

Resources and Locks
• Locks do not necessarily have to refer to mutexes/semaphores

• Locks can also be applied to hardware resources
• Example: the I2C interface in your boards that connect to the LED driver

• Only one task should be able to access it at a time

• If a task doing an I2C write is preempted in the middle of sending a command
stream, and the new task attempts to send its own, the LED driver will be
misconfigured for both tasks.

EEL4930 -- Microprocessor Applications II27

Notifying the Kernel
• Need to tell the kernel

• Resource we are using

• Action on resource [grab/release/wait]

• Use service call interface
• sys_futex: fast userspace mutexes

• sys_futex(void* resource, int action);

EEL4930 -- Microprocessor Applications II28

About sys_futex
sys_futex:

if action is wait:

add resource to task

block task

if action is grab:

if resource is held:

add resource to task

block task

else

set resource as used

if action is release:

unblock resource

unblock one blocked task waiting on resource

EEL4930 – Microprocessor Applications II29

Blocking Semaphore Implementation
/* blocking wait loop*/

ldr r0, =lock_address

ldr r1, =WAIT

mov r2, #1

1: ldrex r3, [r0] /* get value of lock, place tag on it */

cmp r3, #0 /* check if zero */

blne futex /* we don’t have the lock, block */

bne 1b /* retry to get lock */

strex r3, r2, [r0] /* try to store lock on it, if we lost

* the tag because someone else read

* from it, the store will fail

*/

cmp r3, #0 /* check if the store succeeded */

blne futex /* we don’t have the lock, block */

bne 1b /* and try again */

/* we now have the lock, access critical resource */

ldr r1, =GRAB /* tell system we have the lock */

bl futex

EEL4930 – Microprocessor Applications II30

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

EEL4930 – Microprocessor Applications II31

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1

EEL4930 – Microprocessor Applications II32

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2

𝜏2 blocked, scheduler picks 𝜏1

EEL4930 – Microprocessor Applications II33

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1

Quantum yielded by 𝜏2 end, 𝜏2 is TASK_BLOCKED

EEL4930 – Microprocessor Applications II34

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏1

EEL4930 – Microprocessor Applications II35

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏1 𝜏1

EEL4930 – Microprocessor Applications II36

Round Robin Scheduling
Task Period Arrival Burst Length

𝜏1 80 0 30

𝜏2 80 0 15

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2 will yield after 5 ticks of running until 𝜏1 ends, lock check is 1 tick

𝜏1 𝜏2 𝜏1 𝜏1 𝜏1 𝜏2

𝜏2

EEL4930 -- Microprocessor Applications II37

Multiple Locks
• Tasks may have to request multiple locks

• Order of request is important

• May lead to unresponsive systems

EEL4930 -- Microprocessor Applications II38

Eating and Philosophy
Five philosophers sit at a dining table. Each one of them is given a[n
infinite] bowl of food. Between each bowl, a fork is placed. A philosopher
can either eat or speak, but can not do both at once. In order to eat, a
philosopher must be holding both the fork to the right and to the left of
their bowl. A philosopher can not eat with only one fork.

Assuming that the philosophers do not know when the other wish to eat
or speak, design an algorithm that allows the philosophers to eat and
speak forever.

EEL4930 -- Microprocessor Applications II39

Dining Philosophers Problem
Attempted solution:

• Speak until left fork is available, take it when it is

• Speak until right fork is available, take it when it is

• Eat for a fixed amount of time

• Place right fork on table

• Place left fork on table

• Repeat from the start

EEL4930 -- Microprocessor Applications II40

Dining Philosophers Problem
Issue with solution:

• What happens if all philosophers take the first action at the same
time?

EEL4930 -- Microprocessor Applications II41

Consider the Scenario
• Two tasks are running, 𝜏1 and 𝜏2

• Task 𝜏1 acquires lock 𝐿1

• 𝜏1 is preempted, 𝜏2 starts to run

• 𝜏2 acquires lock 𝐿2

• 𝜏2 is preempted, 𝜏1 resumes

• 𝜏1 attempts to acquire lock 𝐿2, lock is in use, task is blocked

• 𝜏2 resumes, tries to acquire lock 𝐿1, lock in use, task is blocked

 Tasks 𝜏1 and 𝜏2 are stuck waiting on each other!

 System is deadlocked!

EEL4930 -- Microprocessor Applications II42

Deadlocks
• Coffman Conditions

• Mutual Exclusion: resources are unshareable

• Hold and wait: task currently holding a resource is requesting a resource held
by another task

• No preemption: resources can only be forfeited voluntarily by tasks

• Circular wait: In a set of tasks 𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑛} task 𝜏1 is waiting on a
resource held by 𝜏2, who waits on a resource held by task 𝜏3 … until 𝜏𝑛 which
waits on a resource held by task 𝜏1.

EEL4930 -- Microprocessor Applications II43

Detecting Deadlocks
• Track resource allocation

• Track process states

• Attempt to make prediction based on information

 Deadlock may still go by undetected

EEL4930 -- Microprocessor Applications II44

Dealing with Deadlocks
• Preempt resources being held by task

• Task may behave erratically afterwards

• Terminate task holding resource
• Breaks circular wait

• Work done by task lost

• Functionality lost

• May lead to system instability

EEL4930 -- Microprocessor Applications II45

Preventing Deadlocks
Eliminate one of the four Coffman conditions

• mutual exclusion
• Tasks have spooled access to resources

• Tasks can’t have locks on resources

• Some resources are non-trivial to spool

• Deadlocks can still arise

• hold and wait

• preempt resources

• circular wait

EEL4930 -- Microprocessor Applications II46

Preventing Deadlocks
Eliminate one of the four Coffman conditions

• mutual exclusion

• hold and wait
• Tasks request all needed resources at startup

• Difficult to predict resource utilization

• Wastes resources

• preempt resources

• circular wait

EEL4930 -- Microprocessor Applications II47

Preventing Deadlocks
Eliminate one of the four Coffman conditions

• mutual exclusion

• hold and wait
• Tasks can only request resources when they are holding none

• Impractical at times

• Long wait times for commonly used resources (resource starvation)

• preempt resources

• circular wait

EEL4930 -- Microprocessor Applications II48

Preventing Deadlocks
Eliminate one of the four Coffman conditions

• mutual exclusion

• hold and wait

• preempt resources
• Allow resource preemption

• May be impossible

• Task may require to hold the resource or result may be inconsistent

• circular wait

EEL4930 -- Microprocessor Applications II49

Preventing Deadlocks
Eliminate one of the four Coffman conditions

• mutual exclusion

• hold and wait

• preempt resources

• circular wait
• Determine partial ordering of resources using hierarchy

• Graph traversal problem

• Issue in constructing graph

• Solution not obvious

EEL4930 -- Microprocessor Applications II50

Modern OS & Deadlocks
This is what most Operating Systems do to deal with deadlocks:

EEL4930 -- Microprocessor Applications II51

Modern OS & Deadlocks
This is what most Operating Systems do to deal with deadlocks:

Assume they do not happen.

EEL4930 -- Microprocessor Applications II52

Modern OS & Deadlocks
This is what most Operating Systems do to deal with deadlocks:

It is the programmer’s responsibility to ensure no deadlock conditions
occur. If one does occur, kill offending tasks manually.

EEL4930 -- Microprocessor Applications II53

Modern OS & Deadlocks
This is what most Operating Systems do to deal with deadlocks:

If the OS is deadlocked, hit the reset button.

EEL4930 -- Microprocessor Applications II54

Idling Tasks
• Sometimes we need to delay execution

• Need to wait on a condition

• e.g. wait for device to respond to command

• Could use an idle delay loop
• Decrement a variable until it reaches 0, doing nothing.

EEL4930 -- Microprocessor Applications II55

Issue & Solution
• Executing task is idling, doing nothing

• CPU is wasted, other tasks could be doing something

• Issue exacerbated if we are scheduled again in the same idle loop

 Put the task to sleep!

• Notify kernel we wish to sleep

• Kernel adds timer to task and blocks it
• On every SysTick event, decrement timer

• If timer reaches 0, unblock task

EEL4930 -- Microprocessor Applications II56

The sys_usleep Service Call
void sys_usleep(unsigned int us) {

struct timer_list t;

save_current_context(); /* save task context */

t = get_new_timer(); /* get a new timer */

t->count = us; /* set its value */

t->state = ACTIVE; /* set it to active */

t->task = current; /* attach current task */

current->state = TASK_BLOCKED; /* block current task */

add_timer(timers, t); /* add the timer to list */

schedule(); /* schedule a new task */

restore_context(); /* restore its context */

}

EEL4930 – Microprocessor Applications II57

SysTick and Timers
void systick_handler(void) {

/* ... */

for(timer_list* t = timers; t; t = t->next) {

t->count--;

if(!t->count) {

t->task->state = TASK_RUNNABLE;

t->state = EXPIRED;

}

}

remove_expired_timers(timers);

/* handle other SysTick events */

}

EEL4930 -- Microprocessor Applications II58

Effect
• Kernel will not schedule task while it is sleeping

• Sleep resolution dependent on SysTick interrupt frequency
• Not guaranteed to be exact

• Make SysTick too fast and CPU will be wasted on servicing that interrupt

• 100 us – 10ms resolution ok for most cases

Crash Course: C
DATA STRUCTURES: CIRCULAR BUFFERS AND FIFOS

EEL4930 -- Microprocessor Applications II59

EEL4930 -- Microprocessor Applications II60

Circular Buffer
• Normal buffers are fixed in size, with one index element

• Think arrays

container

index

/* C version */

#define N 16

struct buffer_int {

int container[N];

size_t index;

};

/* C++ version */

template<typename T, size_t N>

struct buffer {

T container[N];

size_t index;

};

EEL4930 -- Microprocessor Applications II61

Circular Buffer
• Circular buffers are also fixed in size, however

• They contain two pointer elements: a head and a tail

• They optionally contain a count of used elements

container

head

/* C version */

#define N 16

struct buffer_int {

int container[N];

size_t head, tail, count;

};

/* C++ version */

template<typename T, size_t N>

struct buffer {

T container[N];

size_t head, tail, count;

};

tail

EEL4930 -- Microprocessor Applications II62

Circular Buffer
• Operations:

• Put element: write at the head of the buffer

• Get element: read at the tail of the buffer

• Initialization:
• Set head, tail to start of container

• Set count to 0

• When head reaches end of container
• Reset head to initial position

• Start adding elements at the start of the buffer

• But only if there’s space on the buffer (count < N)

EEL4930 -- Microprocessor Applications II63

Circular Buffer

Hello, world!

head

tail

EEL4930 -- Microprocessor Applications II64

Circular Buffer

Hello, world!

head

tail
H

Operation: put

EEL4930 -- Microprocessor Applications II65

Circular Buffer

Hello, world!

head

tail
H

Operation: put

e

EEL4930 -- Microprocessor Applications II66

Circular Buffer

Hello, world!

head

tail
H

Operation: put

e

l

EEL4930 -- Microprocessor Applications II67

Circular Buffer

Hello, world!

head

tail

H

Operation: get

e

l

H

EEL4930 -- Microprocessor Applications II68

Circular Buffer

Hello, world!

head

tail

r

Operation: put x 7

e

l

H

l

o

_

w o

EEL4930 -- Microprocessor Applications II69

Circular Buffer
/* circular_buffer.h */

struct circular_buffer;

struct circular_buffer* cb_put(struct circular_buffer* cb, char c);

struct circular_buffer* cb_get(struct circular_buffer* cb, char* c);

int cb_is_full(struct circular_buffer* cb);

int cb_is_empty(struct circular_buffer* cb);

EEL4930 -- Microprocessor Applications II70

Circular Buffer
/* circular_buffer.c */

#define N 16

struct circular_buffer {

char container[N];

size_t head, tail, count;

};

int cb_is_full(struct circular_buffer* cb) {

return cb->count == N;

}

int cb_is_empty(struct circular_buffer* cb) {

return !cb->count;

}

EEL4930 -- Microprocessor Applications II71

Circular Buffer
/* circular_buffer.c */

#define N 16

struct circular_buffer* cb_put(struct circular_buffer* cb, char c) {

if(!cb || cb_is_full(cb)) {

return (struct circular_buffer*)NULL;

}

cb->container[cb->head++];

cb->head &= (N – 1);

cb->count++;

return cb;

}

EEL4930 -- Microprocessor Applications II72

Circular Buffer
/* circular_buffer.c */

struct circular_buffer* cb_get(struct circular_buffer* cb, char* c) {

if(!cb || cb_is_empty(cb)) {

return (struct circular_buffer*)NULL;

}

*c = cb->container[cb->tail++];

cb->tail &= (N – 1);

cb->count--;

return cb;

}

EEL4930 -- Microprocessor Applications II73

Circular Buffer
• First element added to the buffer is the first one to be removed

• Circular buffers belong to a category of data structures called FIFOs
• First-In First-Out data structures

• FIFOs can be implemented using other data structures
• e.g. Linked lists: put at tail, get at head

Inter-Process
Communication
SHARED MEMORY, SOCKETS, FILES, PIPES

EEL4930 -- Microprocessor Applications II74

EEL4930 -- Microprocessor Applications II75

Motivation
• Tasks normally run isolated from each other

• Necessary to two or more tasks to share information
• Example: a task gathers GPS coordinate, another task processes the coordinates

• Tasks must synchronize data transmission

EEL4930 -- Microprocessor Applications II76

IPC Mechanisms
• Shared Memory

• Sockets

• Files

• Pipes

EEL4930 -- Microprocessor Applications II77

IPC Mechanisms
• Shared Memory

• OS gives access to same region of memory to different tasks

• One task writes to the shared memory area

• Another task can read the written information

• Tasks are responsible for creating synchronization primitives

• Equivalent to a shared buffer

• Sockets

• Files

• Pipes

EEL4930 -- Microprocessor Applications II78

IPC Mechanisms
• Shared Memory

• Sockets
• Data is sent over a network interface

• Socket may be local and created over a virtual network interface (e.g. loopback)

• Tasks must manage the communications protocol

• Files

• Pipes

EEL4930 -- Microprocessor Applications II79

IPC Mechanisms
• Shared Memory

• Sockets

• Files
• Record in a storage device

• Tasks open the same file

• Perform read/write operations on file to receive/send data

• OS must ensure file reads and writes are atomic for consistency

• Pipes

EEL4930 -- Microprocessor Applications II80

IPC Mechanisms
• Shared Memory

• Sockets

• Files

• Pipes
• Unidirectional data channel

• Read/writes are handled by OS

• Data written to one end of the pipe is buffered by the OS

• Data read from the other end of the pipe is removed from buffer

EEL4930 -- Microprocessor Applications II81

Implementing Pipes
/* We start by declaring a file descriptor structure. The file
descriptor contains a pointer to its corresponding write function, its
corresponding read function, a close function, a function to set
attributes, a pointer to the underlying data structure containing file
descriptor information, and the file descriptor number */

struct file_descriptor {

ssize_t (*read_fn)(void*, void*, size_t);

ssize_t (*write_fn)(void*, const void*, size_t);

int (*close_fn)(void*);

int (*fcntl_fn)(void*, int, ...);

void* fd_struct_data;

int fildes;

};

EEL4930 -- Microprocessor Applications II82

Implementing Pipes
/* We also define the pipe as a circular buffer, but add an entry for
flags. This allows us to record information about the pipe. */

#define PIPE_BUF_LEN 32

struct pipe_struct {

char container[PIPE_BUF_LEN];

size_t head, tail, count;

int flags[2];

};

EEL4930 -- Microprocessor Applications II83

Implementing Pipes
/* We assume the existence of the following functions. Their
implementation are not given here. */

/** obtains a pointer to the next available file descriptor struct */

struct file_descriptor* get_next_fildes(void);

/** obtains a pointer to the next available pipe struct */

struct pipe_struct* get_next_pipe(void);

/** releases a file descriptor struct to the kernel */

void release_fildes(struct file_descriptor* fd);

/** obtain a file descriptor struct associated with current process */

struct file_descriptor* get_fildes(int fd);

/** places a task to sleep waiting for an event */

void interruptible_wait(void);

EEL4930 -- Microprocessor Applications II84

Implementing Pipes
/* service call to create a pipe. */

int sys_pipe(int pipefd[2]) {

struct file_descriptor* fd[2];

struct pipe_struct* ps;

if(!(fd[0] = get_next_fildes())) {

/* no more file descriptors available */

goto err_no_fildes_0;

}

/* continues... */

EEL4930 -- Microprocessor Applications II85

Implementing Pipes
/* continued */

if(!(fd[1] = get_next_fildes())) {

/* no more file descriptors available */

goto err_no_fildes_1;

}

if(!(ps = get_next_pipe())) {

/* no more pipe descriptors available */

goto err_no_pipe;

}

/* continues... */

EEL4930 -- Microprocessor Applications II86

Implementing Pipes
/* continued */

/* read end of pipe */

fd[0]->read_fn = pipe_read;

fd[0]->fd_struct_data = ps;

/* write end of pipe */

fd[1]->write_fn = pipe_write;

fd[1]->fd_struct_data = ps;

pipefd[0] = file_descriptor[0]->fildes;

pipefd[1] = file_descriptor[1]->fildes;

/* continues... */

EEL4930 -- Microprocessor Applications II87

Implementing Pipes
/* continued */

return 0;

/* error handling */

err_no_pipe:

release_fildes(fd[1]);

err_no_fildes_1:

release_fildes(fd[0]);

err_no_fildes_0:

return –ENFILE;

}

EEL4930 -- Microprocessor Applications II88

Implementing Pipes
/* read from pipe */

ssize_t pipe_read(void* fd_struct, void* buf, size_t count) {

struct pipe_struct* p = (struct pipe_struct*)fd_struct;

size_t ret = 0;

while(ret < count &&

(!cb_is_empty(p) || !(p->flags[0] & O_NONBLOCK)) {

while(cb_is_empty(p)) {

/* blocking read, wait for data */

interruptible_wait();

}

cb_get(p, (((char*)buf) + ret));

}

return ret;

}

EEL4930 -- Microprocessor Applications II89

Implementing Pipes
/* write to pipe */

ssize_t pipe_write(void* fd_struct, void* buf, size_t count) {

struct pipe_struct* p = (struct pipe_struct*)fd_struct;

size_t ret = 0;

while(ret < count &&

(!cb_is_full(p) || !(p->flags[1] & O_NONBLOCK)) {

while(cb_is_full(p)) {

/* blocking write, wait for data to leave */

interruptible_wait();

}

cb_put(p, *(((char*)buf) + ret));

}

return ret;

}

EEL4930 -- Microprocessor Applications II90

Dispatching Pipes
/* service call handling reads */

ssize_t sys_read(int fildes, void* buf, size_t count) {

struct file_descriptor* fd;

if(!(fd = get_file_descriptor(fildes))) {

/* not a valid file descriptor */

return –EBADF;

}

if(fd->read_fn) {

/* valid read file descriptor, dispatch function */

return fd->read_fn(fd->fd_struct_data, buf, count);

}

return -EBADF;

}

EEL4930 -- Microprocessor Applications II91

Dispatching Pipes
/* service call handling writes */

ssize_t sys_write(int fildes, const void* buf, size_t count) {

struct file_descriptor* fd;

if(!(fd = get_file_descriptor(fildes))) {

/* not a valid file descriptor */

return –EBADF;

}

if(fd->write_fn) {

/* valid write file descriptor, dispatch function */

return fd->write_fn(fd->fd_struct_data, buf, count);

}

return -EBADF;

}

