
Resistive Touch Screen
Liquid Crystal Display Module
THREAD PRIORITY, PRIORITY INVERSION, PRIORITY INHERITANCE, 
APERIODIC EVENTS

EEL4930 -- Microprocessor Applications II1



EEL4930 -- Microprocessor Applications II2

2.8'' TFT LCD Module
• Model HY28B

• LCD Controller: ILI9325

• Touchscreen Controller: ADS7843

• Interface:
• SPI

• 8-bit parallel

• 16-bit parallel

• Touch screen interface:
• SPI



EEL4930 -- Microprocessor Applications II3

2.8'' TFT LCD Module
• Colors: 65536

• Resolution: 320 by 240



EEL4930 -- Microprocessor Applications II4

Serial Peripheral Interface
• Three main signals

• SCLK: Serial Clock

• MOSI: Master Out Slave In

• MISO: Master In Slave Out

• Allows multiple devices to reside on the same bus
• CS: Chip Select (sometimes SS: Slave Select)

• Must have a number of CS signals equal to number of slaves on the topology

• Only one CS line can be asserted at a time

• Master is responsible for asserting CS



EEL4930 -- Microprocessor Applications II5

Serial Peripheral Interface
• SCLK: Serial Clock

• Always driven by master

• Rising edge of clock shifts data from master and slave device

• Falling edge of clock samples data on master and slave device

• MOSI: Master Out Slave In
• Used by master to transmit data to the asserted slave

• Slaves receivers are connected to this line

• MISO: Master In Slave Out
• Used by master to receive data from the asserted slave

• Slave transmitters are connected to this line



EEL4930 -- Microprocessor Applications II6

Serial Peripheral Interface



EEL4930 -- Microprocessor Applications II7

Serial Peripheral Interface



EEL4930 -- Microprocessor Applications II8

LCD Operation
• Command interface

• LCD controller will receive commands from one of the three 
[selectable] interfaces

• LCD controller will execute the command
• Move cursor

• Set pixel color



EEL4930 -- Microprocessor Applications II9

LCD Operation
• SPI interface requires clock to idle on HIGH

• SPI interface requires sending a start byte

ID Set by external pin configuration

RS Register Select (0 = command, 1 = data)

RW Read/Write (0 = write, 1 = read)

• After start byte is sent, data and commands can be sent to LCD

0 1 1 1 0 ID RS RW



EEL4930 -- Microprocessor Applications II10

LCD Example SPI Frame



EEL4930 -- Microprocessor Applications II11

Touch Screen Functionality
• Resistive touchscreen

1. Transparent film

2. ITO conductive coating

3. Spacer dots

4. Airgap

5. Bottom circuit layer

6. Backing panel



EEL4930 -- Microprocessor Applications II12

Touch Screen Functionality
• When pressed a resistor network 

is created

• Controller measures voltage 
created in voltage divider
• Get X: set known voltages in 2 and 4 

rails, measure voltage in 1 or 3

• Get Y: set known voltages in 1 and 3 
rails, measure voltage in 2 or 4

x

y



EEL4930 -- Microprocessor Applications II13

Touch Screen Functionality
Circuit on touch:

𝑅1𝑅2

𝑅
3

𝑅
4



EEL4930 -- Microprocessor Applications II14

Touch Screen Functionality
Get Y coordinate:

𝑅1𝑅2

𝑅
3

𝑅
4

𝑉𝑦𝑉𝑂



EEL4930 -- Microprocessor Applications II15

Touch Screen Functionality
Y-coordinate is determined by measuring 𝑉0

𝑉0 =
𝑅𝑖𝑅4

𝑅2 𝑅3 + 𝑅4 + 𝑅4𝑅3 + 𝑅𝑖(𝑅4 + 𝑅3)
𝑉𝑦

ADC input is high impedance:
𝑅𝑖 ≫ 𝑅2, 𝑅3, 𝑅4

Then:

𝑉0 ≈
𝑅4

𝑅4 + 𝑅3
𝑉𝑦

To determine position, find 𝑅4:

𝑅4 = 𝑅4 + 𝑅3
𝑉0
𝑉𝑦

𝑉𝑦

𝑅2 𝑅3

𝑅
4

𝑉0

𝑅
𝑖

𝑅𝑖 is the ADC’s input resistance



EEL4930 -- Microprocessor Applications II16

Touch Screen Functionality
• The ADS7843 performs these actions for you

• 12-bit sampling ADC

• Low output (source) resistance (5-6 Ω)

• High input impedance (5 GΩ)

• Serial interface (Similar to SPI but not quite like it)

• You are still responsible for converting the analog voltage value into a 
position value



EEL4930 -- Microprocessor Applications II17

ADS7843 Operation
• First 8 clock cycles: send control byte

• Wait 1 clock cycles

• Next 12 clock cycles are data

• Fill rest with 3 clocks (DOUT=0)

 24 clock cycles total

S A2 A1 A0 MODE SER/~DFR PD1 PD0

Bit Description

S Start bit. Always 1.

A2-A0 Channel Select bits.

MODE 12-bit (0)/8-bit (1) conversion bit.

SER/~DFR Single-ended/differential reference select bit.

PD1-PD0 Power-down mode select bits.



EEL4930 -- Microprocessor Applications II18

ADS7843 Operation



EEL4930 -- Microprocessor Applications II19

Drawing Graphics
• Bresenham’s Line Algorithm

• Avoid expensive floating point computations when drawing a slanted line in a 
pixel matrix

• Incremental error algorithm

• Developed at IBM in 1962

• https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#All_cases



EEL4930 -- Microprocessor Applications II20

Drawing Graphics
• Midpoint Circle Algorithm

• Draw a circle in a pixel matrix without using floating point computations

• Similar to Bresenham’s Line Algorithm

• Divides circle into 8 octants, draws them simultaneously

• https://en.wikipedia.org/wiki/Midpoint_circle_algorithm#C_example



EEL4930 -- Microprocessor Applications II21

Implementation Required
• Provided Functions:

Function Description

LCD_Init() Initializes the LCD

PutChar() Writes a character on the LCD

LCD_Text() Writes a string on the LCD

LCD_WriteIndex() Sets address for register to write

LCD_WriteData() Writes data to specified register

LCD_ReadData() Reads data from specified index

LCD_Write_Data_Start() Sends starting condition for continuous data transmission.



Priority Scheduling
THREAD PRIORITY, PRIORITY INVERSION, PRIORITY INHERITANCE, 
APERIODIC EVENTS

EEL4930 -- Microprocessor Applications II22



EEL4930 – Microprocessor Applications II23

Scheduler Recap
The act of deciding which runnable task is to be executed is called 
scheduling. Formally,

Given a set of tasks 𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑛}, a set of processors 𝜋 =
𝜋1, 𝜋2, … , 𝜋𝑚 , and a set of resources 𝑅 = 𝑅1, 𝑅2, … , 𝑅𝑘 , scheduling

refers to the act of assigning tasks from 𝑇 to processors from 𝜋 and 
resources from 𝑅 so that all tasks complete under certain imposed 
constraints.



EEL4930 – Microprocessor Applications II24

Round Robin Scheduling
Given a set of tasks 𝑇 = 𝜏1, 𝜏2, … 𝜏𝑛 , each task 𝜏𝑖 is given equal CPU 
time without regards for priority.

• Start at 𝜏1 and allow it to run for 𝑃, then

• Switch to 𝜏2 and allow it to run for 𝑃, then

• …

• Switch to 𝜏𝑛 and allow it to run for 𝑃, then

• Switch to 𝜏1 and allow it to run for 𝑃, then…



EEL4930 – Microprocessor Applications II25

Rate Monotonic Scheduling
• Real time priority scheduler

• The task with the shortest period is scheduled first

• Task is run until it finishes

• Running task is preempted by one with higher priority



EEL4930 – Microprocessor Applications II26

Deadline Monotonic Scheduling
• Also known as Earliest Deadline First scheduling

• Real-time priority scheduler

• Attempt to overcome shortcomings of rate monotonic
• Give priority to tasks that have earliest deadline

• Higher priority tasks always preempt lower priority tasks



EEL4930 -- Microprocessor Applications II27

Thread Priority
• So far we have looked at two different priority scheduling mechanisms

• Rate Monotonic Scheduling: shortest period  highest priority

• Deadline Monotonic Scheduling: earliest deadline  highest priority

• These scheduling mechanisms are for periodic tasks
• Recall that periodic tasks have a start time and an end time

• What about priority scheduling for ``always on'' tasks?

• What about priority scheduling for longer but important tasks?



EEL4930 -- Microprocessor Applications II28

Thread Priority
• Round robin scheduler as implemented has no priority

• If task is runnable, it can be scheduled

• A runnable task may need to perform certain actions at a higher priority

• Scheduler must be modified to account for this!

• Deadline Monotonic Scheduling will use task deadlines as priority
• What about tasks with long deadlines but that perform critical functionality?



EEL4930 -- Microprocessor Applications II29

Example Scenario
• Data acquisition loop

• Captures data from an external sensor (e.g. temperature)

• Data logging loop
• Logs acquired data

Which task should have higher priority? Why?



EEL4930 -- Microprocessor Applications II30

Example Scenario – Round Robin
• Give priority to logger

• Assumes data has been acquired, ready to be recorded

• Possible to miss critical data points

• Give priority to data acquisition
• Assumes data can be logged as fast as being acquired

• No missed data points

• Insight: time of logging does not matter as long as data is logged

Possibility: Give two quantums to data acquisition and one quantum to 
logger.



EEL4930 – Microprocessor Applications II31

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.



EEL4930 – Microprocessor Applications II32

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

𝜏1 acquires lock for shared resource



EEL4930 – Microprocessor Applications II33

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

quantum expires, 𝜏2 arrives, 𝜏1 continues [highest priority]



EEL4930 – Microprocessor Applications II34

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

lock released



EEL4930 – Microprocessor Applications II35

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

second quantum elapsed



EEL4930 – Microprocessor Applications II36

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

third quantum elapsed, schedule 𝜏2



EEL4930 – Microprocessor Applications II37

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

𝜏2 acquires lock for shared resource

𝜏2



EEL4930 – Microprocessor Applications II38

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

quantum elapses, schedule 𝜏1

𝜏2



EEL4930 – Microprocessor Applications II39

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

𝜏1 finishes, schedule 𝜏2

𝜏2

𝜏1



EEL4930 – Microprocessor Applications II40

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

𝜏2 releases lock

𝜏2

𝜏1 𝜏2

𝜏2 finishes



EEL4930 – Microprocessor Applications II41

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 0 40

𝜏2 Lowest 90 10 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏1

𝜏2 releases lock

𝜏2

𝜏1 𝜏2

𝜏2 finishes



EEL4930 – Microprocessor Applications II42

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.



EEL4930 – Microprocessor Applications II43

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2

𝜏2 acquires lock



EEL4930 – Microprocessor Applications II44

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2

𝜏1 arrives, higher priority, schedule 𝜏1



EEL4930 – Microprocessor Applications II45

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2

quantum ends, 𝜏1 has highest priority, schedule 𝜏1

𝜏1



EEL4930 – Microprocessor Applications II46

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2

𝜏1 attempts to acquire lock, fails, is blocked, schedule 𝜏2

𝜏1



EEL4930 – Microprocessor Applications II47

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1

𝜏2 releases lock, 𝜏1 unblocks

𝜏2



EEL4930 – Microprocessor Applications II48

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1

quantum ends, 𝜏1 scheduled, acquires lock

𝜏2



EEL4930 – Microprocessor Applications II49

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1

𝜏1 releases lock

𝜏2 𝜏1

first quantum

second quantum

𝜏1

quantum ends, 𝜏2 scheduled



EEL4930 – Microprocessor Applications II50

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1 𝜏2 𝜏1

𝜏1

quantum ends, 𝜏1 scheduled

𝜏2



EEL4930 – Microprocessor Applications II51

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1 𝜏2 𝜏1

𝜏1

𝜏1 ends, 𝜏2 scheduled

𝜏2 𝜏1



EEL4930 – Microprocessor Applications II52

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1 𝜏2 𝜏1

𝜏1

𝜏2 ends

𝜏2 𝜏1 𝜏2



EEL4930 – Microprocessor Applications II53

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 40

𝜏2 Lowest 90 0 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Tasks 𝜏1, 𝜏2 have a shared resource, will attempt to acquire it 5 ticks from their start, and relinquish it after 6 ticks 
after acquisition. Highest, medium, and lowest priority tasks will receive 3, 2, and 1 continuous CPU quantums, 
respectively.

𝜏2 𝜏1 𝜏2 𝜏1

𝜏1

𝜏2 ends

𝜏2 𝜏1 𝜏2



EEL4930 – Microprocessor Applications II54

Priority and Shared Resources
Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 20

𝜏2 Lowest 90 0 30

𝜏3 Medium 90 6 30

One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Same set of rules as before. 𝜏3 does not share any resources.



EEL4930 – Microprocessor Applications II55

Priority and Shared Resources
One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2

𝜏2 acquires lock

Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 20

𝜏2 Lowest 90 0 30

𝜏3 Medium 90 6 30

Same set of rules as before. 𝜏3 does not share any resources.



EEL4930 – Microprocessor Applications II56

Priority and Shared Resources
One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2

𝜏1 and 𝜏3 arrive, 𝜏1 has higher priority, schedule 𝜏1

Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 20

𝜏2 Lowest 90 0 30

𝜏3 Medium 90 6 30

Same set of rules as before. 𝜏3 does not share any resources.



EEL4930 – Microprocessor Applications II57

Priority and Shared Resources
One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2

quantum ends, 𝜏1 has highest priority, schedule 𝜏1

𝜏1

Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 20

𝜏2 Lowest 90 0 30

𝜏3 Medium 90 6 30

Same set of rules as before. 𝜏3 does not share any resources.



EEL4930 – Microprocessor Applications II58

Priority and Shared Resources
One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2

𝜏1 attempts to acquire lock, fails, is blocked, schedule 𝜏3

𝜏1

Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 20

𝜏2 Lowest 90 0 30

𝜏3 Medium 90 6 30

Same set of rules as before. 𝜏3 does not share any resources.



EEL4930 – Microprocessor Applications II59

Priority and Shared Resources
One CPU Quantum:
10 ticks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

𝜏2

𝜏1 attempts to acquire lock, fails, is blocked, schedule 𝜏3

𝜏1

Task Priority Deadline Arrival Burst Length

𝜏1 Highest 80 6 20

𝜏2 Lowest 90 0 30

𝜏3 Medium 90 6 30

Same set of rules as before. 𝜏3 does not share any resources.



EEL4930 -- Microprocessor Applications II60

Priority Inversion
Failure mode:

• Task 𝜏1and 𝜏2 compete for a shared resource.

• 𝜏2 has lowest priority and 𝜏1 has highest priority.

• 𝜏2 acquires shared resource first.

• 𝜏3 shares no resources with either 𝜏1 or 𝜏2.

• 𝜏3 has higher priority than 𝜏2 but lower priority than 𝜏1

 𝜏3 executes with higher priority than 𝜏1, will not allow 𝜏2 to release 
shared resource!



EEL4930 -- Microprocessor Applications II61

Case Study – Mars Pathfinder
Launch: 4 December 1996

Operator: NASA/JPL

Lander: Pathfinder

• IBM Rad600 SC CPU

• 128 MB of RAM

• 6MB EEPROM

• VxWorks as OS



EEL4930 -- Microprocessor Applications II62

Case Study – Mars Pathfinder

CPU Radio Camera

Bridge

VME Bus

1553 Bus

th
ru

sters

valves

su
n

 sen
so

r

star scan
n

er

A
SI/M

ET

altim
eter

rad
ar

accelero
m

eter



EEL4930 -- Microprocessor Applications II63

Case Study – Mars Pathfinder
• Wind River's VxWorks as RTOS

• Preemtive, fixed priority scheduler

• RTOS employs a cyclic (round robin) scheduler at an 8 Hz rate
• Entire task list executed in 0.125

• 1553 Bus management in two tasks
• bc_sched
• bc_dist

• Other tasks
• Communications
• ASI/MET
• tExec (internal task in VxWorks)



EEL4930 -- Microprocessor Applications II64

Case Study – Mars Pathfinder
H

ig
h

e
r

P
ri

o
ri

ty

tExec

…

bc_sched

bc_dist

…

communications

…

ASI/MET



EEL4930 -- Microprocessor Applications II65

Case Study – Mars Pathfinder
• 1553 Bus Management

• bc_sched: Transmission arbiter on the 1553 bus, transmits schedule for next 
bus cycle

• bc_dist: Bus distribution task that decides who receives data

• Only one task can be employing the bus at a time
• bc_sched checks whether bc_dist finishes

• bc_dist uses select() to use VxWorks's pipe() facility to distribute data 
to ASI/MET task

• ASI/MET task uses the pipe() facility to provide scientific data to transmit to 
radio (which scientists very much want here in Earth)

• ASI/MET and bc_dist use a shared resource protected by a mutex



EEL4930 -- Microprocessor Applications II66

Case Study – Mars Pathfinder
• The Priority Inversion issue that went by unnoticed

• ASI/MET calls select() and grabs mutex to update stored waitlist

• ASI/MET is preempted by high priority task bc_dist

• bc_dist can not acquire mutex lock and is blocked

• ASI/MET task is preempted by medium priority tasks

• bc_sched activates, sees bc_dist has not completed

• bc_dist missed the deadline!

 Programmed reaction to scheduler failure: Spacecraft resets, 
terminates all ground commands and reinitializes all hardware



EEL4930 -- Microprocessor Applications II67

Case Study – Mars Pathfinder
• Root issue: engineers did not anticipate the worst case scenario

• Although arguably, this was a best case scenario

• Pathfinder's antenna worked better than expected
• More data to send

• Higher load on radio preempted the ASI/MET task for longer times

• ASI/MET task had lock blocking bc_dist

• Priority Inversion ensued

Question: How do we fix this issue?



EEL4930 -- Microprocessor Applications II68

Priority Inheritance
• After bc_dist blocks, ASI/MET task inherits the priority of bc_dist

• The ASI/MET task executes with the priority of bc_dist for as long as 
it holds the lock

• ASI/MET can no longer be preempted by communications task

• Upon releasing the lock, ASI/MET task returns to be a low priority task 
and is preempted by bc_dist

• System operates as normal

This is the fix that was sent to the Mars Pathfinder.



EEL4930 -- Microprocessor Applications II69

Priority Inheritance

In general: When a high priority task is blocked by a lower priority task 
due to a shared resource being held, the lower priority task is temporarily 
upgraded to high priority until its critical section finishes.



EEL4930 -- Microprocessor Applications II70

Speaking of the Antenna
• The task to transmit was only activated when transmission was 

possible

• This is not a periodic event

• This happens stochastically

 This is an aperiodic event



EEL4930 -- Microprocessor Applications II71

Aperiodic Events
• Aperiodic events are events to which there are no limitations on arrival 

times.

• Follow the same semantics as other real-time tasks
• Soft aperiodic events are those that execute without deadlines

• Firm aperiodic events are those that execute with a deadline (worst case 
execution time must be known)



EEL4930 -- Microprocessor Applications II72

Dealing with Soft Aperiodic Events
• No deadline on execution

• Treat them as background tasks

• Schedule them when there is nothing else to do

• Queue them in a round robin fashion
• Keep two execution queues: one for real-time tasks and one for soft aperiodic 

events

• Give priority to real-time tasks

• Any issues with this?

• Relies on CPU time being available for the background task queue (CPU 
starvation)



EEL4930 -- Microprocessor Applications II73

Dealing with Soft Aperiodic Events
• Better solution: use a task server

• The task server is a periodic event whose only job is to service 
aperiodic events
• Almost like a scheduler for background tasks that gets scheduled every once in 

a while

• Being a real-time task, task servers have
• A period 𝑇
• A burst length 𝐶 (called the capacity of the server)

• At every period 𝑇, the server becomes active and services any 
aperiodic event using its capacity 𝐶

• If no aperiodic events are waiting to be serviced, the task yields.



EEL4930 -- Microprocessor Applications II74

Task Servers
Given:

• Aperiodic event with burst length 𝐶𝑎 and hard deadline 𝐷𝑎

• Task server with capacity 𝐶𝑠 and period 𝑇𝑠

The worst case deadline of the single task has the relation

𝑇𝑠 +
𝐶𝑎
𝐶𝑠

× 𝑇𝑠 ≤ 𝐷𝑎



EEL4930 -- Microprocessor Applications II75

Task Servers
• Two types of priority

• Fixed priority: based on Rate Monotonic Scheduling

• Dynamic priority: based on Deadline Monotonic Scheduling

• Need to measure how aperiodic events will be serviced by the server

• Need to measure the effect of the server in periodic tasks
• Remember the Mars Pathfinder: communications woke up too often



EEL4930 -- Microprocessor Applications II76

Polling Server
• Fixed priority server executed as regular task

• Aperiodic events are served only during the execution interval of server

• Implementation:
• Server has a run queue for aperiodic events
• Control capacity used by aperiodic events

• Response time:
• Better than background execution
• Aperiodic events are guaranteed CPU time by the server

• Impact on periodic task set:
• Same as that of a periodic task
• Server itself is a periodic task



EEL4930 -- Microprocessor Applications II77

Deferrable Server
• Fixed priority server, allowed to execute at any instant

• Handles aperiodic events until either the end of its period or its capacity gets 
exhausted

• Capacity is usually equal to its burst length [but this is not mandatory] and 
gets replenished at the start of each period

• Response time:
• Improved over a polling server

• Impact on periodic task set:
• Negative impact on schedulability of periodic tasks
• Delayed execution increases load on the future
• Possible that server executes back to back, causing other periodic tasks to miss 

deadlines



EEL4930 -- Microprocessor Applications II78

Sporadic Server
• Fixed priority server similar to deferrable server

• We do not allow the sporadic server to penalize the schedulability of 
periodic tasks
• Do not replenish its capacity at the start of every period

• Only replenish capacity one period after it is used

• Response time:
• Similar to deferrable servers

• Impact on periodic tasks
• The same as a polling server



EEL4930 -- Microprocessor Applications II79

Total Bandwidth Server
• Dynamic priority server

• Executes aperiodic events as soon as possible while preserving 
bandwidth it has

• When the 𝑖th periodic event arrives at time 𝑡 = 𝑎𝑖, it receives a 
deadline given by

𝑑𝑖 = max(𝑎𝑖 , 𝑑𝑖) +
𝐶𝑖
𝑈𝑠

where, by definition 𝑑0 = 0, 𝐶𝑖 is the event burst length, and 𝑈𝑠 is the 
server utilization (bandwidth)

• Once deadline is computed, server is inserted into ready queue and is 
treated as any other periodic event



EEL4930 -- Microprocessor Applications II80

Total Bandwidth Server
• Server requires a priori knowledge of the execution time of the event

• If event executes longer than declared, server may overrun scheduler

• Designed to work with Deadline Monotonic Scheduler

• Given set of n periodic events with processor utilization 𝑈𝑝, and a total 
bandwidth server with utilization 𝑈𝑠, the whole set is schedulable 
using DMS if and only if

𝑈𝑝 + 𝑈𝑠 ≤ 1



EEL4930 -- Microprocessor Applications II81

Constant Bandwidth Server
• Dynamic priority server

• Developed to solve the robustness issues that arise with Total 
Bandwidth Servers

• Enforces bandwidth isolation by managing execution time and capacity

• Aperiodic event 𝜏𝑖 is reserved a maximum runtime 𝐶𝑠 every 
reservation period 𝑇𝑠



EEL4930 -- Microprocessor Applications II82

Constant Bandwidth Server
• When the event first arrives, it is given a scheduling deadline of 𝑑𝑖

𝑠 = 0
and a current runtime 𝑞𝑖 = 0

• We check if the current scheduling deadline can be used

𝑑𝑖
𝑠 > 𝑡 ∧

𝑞𝑖
𝑑𝑖
𝑠 − 𝑡

<
𝐶𝑠
𝑇𝑠

• If not, set
𝑑𝑖
𝑠 = 𝑡 + 𝑇𝑠
𝑞𝑖 = 𝐶𝑠

• When 𝜏𝑖 executes for a time 𝛿,update
𝑞𝑖 = 𝑞𝑖 − 𝛿



EEL4930 -- Microprocessor Applications II83

Constant Bandwidth Server
• If 𝑞𝑖 reaches 0, then 𝜏𝑖 can not be scheduled until time 𝑑𝑖

𝑠, at which 
point we update the values

𝑑𝑖
𝑠 = 𝑑𝑖

𝑠 + 𝑇𝑠
𝑞𝑖 = 𝑞𝑖 + 𝐶𝑠

• Keep updating deadline of aperiodic event until it finishes completion

 Aperiodic task can no longer overrun the scheduler



EEL4930 -- Microprocessor Applications II84

Creating Aperiodic Events
• Done in response to a stimulus/input

• The RTOS must allocate resources for the new task
• Stack regions

• Data regions

• Code regions

• The RTOS must add the newly created task to the list of runnable tasks
• If using a server, the server must be notified of the new task

• Task is executed as necessary



EEL4930 -- Microprocessor Applications II85

Creating Aperiodic Events
Example assumptions:

• Tasks creation happens when the CPU is in Handler Mode

• Tasks are executed in non-privileged mode

• Tasks utilize their own stack

• Code for task has been loaded already

• Task will be run as a background service



EEL4930 -- Microprocessor Applications II86

Creating Aperiodic Events
/* void* init_user_stack(void* stack_address, void* entry_point) */

init_user_stack:

mov r3, #(1 << 24) /* xPSR with Thumb bit set */

mov r2, r1 /* handler return address is entry point */

mov r1, #-1 /* lr to top of memory */

stmdb r0!, {r1, r2, r3} /* store top of frame */

mov r1, #13 /* prepare to initialize other registers */

eor r2, r2, r2 /* clear r2 */

1: subs r1, r1, #1 /* push 0 into stack for all registers */

stmdb r0!, {r2} /* that need to be initialized */

bne 1b /* keep looping until all registers */

bx lr /* return */

When CPU leaves handler mode, it will load the stack frame from psp. The CPU will leave handler mode and start 
executing the newly created task.



EEL4930 -- Microprocessor Applications II87

Exiting Aperiodic Events
• Aperiodic events will eventually terminate

• RTOS must deallocate resources related to the task

• RTOS must remove the event from the task queue

• If necessary, RTOS must destroy all references to locks held by the task

• RTOS may need to keep the Process Control Block for the task if its 
termination must be handled by another task

 Task must notify OS it wishes to exit

 sys_exit



EEL4930 -- Microprocessor Applications II88

Exiting Aperiodic Events
/* C library function */

extern void __exit(int retcode);

void exit(int retcode) {

__exit(retcode);

}

/* assembly wrapper */

__exit:

svc #6

1: br 1b



EEL4930 -- Microprocessor Applications II89

Exiting Aperiodic Events
/* kernel interface */

void sys_exit(int retcode) {

deallocate_resources(current);

destroy_locks(current);

if(current->has_parent) {

zombify(current);

send_signal(current->ppid, SIGCHLD, current->pid, retcode);

}

}


